Comparative Analysis of Data Correlations for Selecting Predictive Variables Using Simple Linear Regression Comparative Analysis of Data Correlations for Selecting Predictive Variables Using Simple Linear Regression

Main Article Content

กุลิสรา ทรัพย์ประกอบ
นาวิน ดวงสุวรรณ์
ปยุต มีมานะ

Abstract

This study aimed to compare linear relationships among variables across multiple datasets to identify highly positively correlated variable pairs suitable for predictive modeling using simple linear regression. Secondary data from five open datasets, Heart.csv, StudentMarks.csv, TestEnergyData.csv, Salary_dataset.csv, and Advertising.csv, were analyzed using Pearson’s correlation coefficient, followed by the construction of simple linear regression models to evaluate predictive performance. Key evaluation metrics included the coefficient of determination ( R2R^2R2 ), root mean squared error (RMSE), and mean absolute error (MAE). The results showed that Salary_dataset.csv exhibited the strongest linear relationship, with an R2R^2R2 of 0.9570, indicating that “Years of Experience” is a highly effective predictor of “Salary.” Similarly, StudentMarks.csv and Advertising.csv demonstrated strong correlations ( R2>0.80R^2 > 0.80R2>0.80 ), suggesting that “Study Time” and “TV Advertising” are reliable predictors of student marks and product sales, respectively. In contrast, Heart.csv and TestEnergyData.csv showed weak to moderate relationships and were deemed less suitable for prediction using simple linear regression. This research emphasizes the importance of correlation-based variable selection prior to model construction. The comparative approach adopted here offers a practical method for identifying high-potential predictor variables, supporting data-driven forecasting in fields such as education, economics, and marketing.

Article Details

How to Cite
ทรัพย์ประกอบ ก., ดวงสุวรรณ์ น., & มีมานะ ป. (2025). Comparative Analysis of Data Correlations for Selecting Predictive Variables Using Simple Linear Regression: Comparative Analysis of Data Correlations for Selecting Predictive Variables Using Simple Linear Regression. Journal of Technology Management and Digital Innovation, 2(1 (มกราคม-มิถุนายน), 16–26. retrieved from https://ph05.tci-thaijo.org/index.php/TMDI/article/view/190
Section
Research Article

References

เจษฎา ขจรฤทธิ์, ปิยนุช ชัยพรแก้ว, และหนึ่งฤทัย เอ้งฉ้วน. (2560). การประยุกต์ใช้เทคโนโลยี Internet of Things ใน

การควบคุมระบบส่องสว่างสำหรับบ้านอัจฉริยะ. วารสารเทคโนโลยีสารสนเทศ, 7(1), 1-11.

นันทิยา ตันติดลธเนศ และแสงทอง บุญยิ่ง. (2563). ต้นแบบการตรวจสอบย้อนกลับการปลูกพืชอาหารปลอดภัยในชุมชน

ด้วยเทคโนโลยีอาร์เอฟไอดี. วารสารวิชาการการประยุกต์ใช้เทคโนโลยีสารสนเทศ, 1(1), 83-98.

Alaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, F. (2017). Internet of Things security: A survey.

Journal of Network and Computer Applications, 88, 10-28. https://doi.org/10.1016/j.jnca.2017.04.002

Ashton, K. (2009). That 'internet of things' thing. RFID Journal, 22(7), 97-114.

Date, C. J. (2019). An introduction to database systems (8th ed.). Addison-Wesley Professional.

Duckett, J. (2014). HTML and CSS: Design and build websites. John Wiley & Sons.

Evans, D. (2011). The internet of things: How the next evolution of the internet is changing everything.

Cisco Internet Business Solutions Group.

Flanagan, D. (2020). JavaScript: The definitive guide (7th ed.). O'Reilly Media.

Fraden, J. (2016). Handbook of modern sensors: Physics, designs, and applications (5th ed.). Springer.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural

elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660.

https://doi.org/10.1016/j.future.2013.01.010

Kolban, N. (2016). Kolban's book on ESP32. Leanpub.

Moroney, L. (2017). Firebase: The definitive guide. O'Reilly Media.

Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of software testing (3rd ed.). John Wiley & Sons.

Nielsen, J. (2012). Usability engineering. Morgan Kaufmann.

Patel, K. K., Patel, S. M., Scholar, P. G., & Salazar, C. (2020). An efficient key management technique for

the Internet of Things. Sensors, 20(8), 2450. https://doi.org/10.3390/s20082450

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., & Youman, C. E. (1996). Role-based access control models.

Computer, 29(2), 38-47. https://doi.org/10.1109/2.485845

Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The internet of things—A survey of topics and trends.

Information Systems Frontiers, 17(2), 261-274. https://doi.org/10.1007/s10796-014-9489-2