Structural and Optical Properties of Co-precipitated Mn-doped TiO2 Nanoparticles

Main Article Content

Prasopporn Junlabhut
Pilaipon Nuthongkum

Abstract

Mn-doped TiO2 nanoparticles have been synthesized by conventional co-precipitation process with different dopant concentrations. As-synthesized products were calcined at 400-700 ºC for 3 h in order to improve their crystallinity. The crystalline phase structure, surface morphology and optical properties of Mn doped TiO2 nanoparticles were investigated by X-ray diffraction, Scanning electron microscope and UV-Vis spectroscopy. The phase transformation from anatase to rutile occurred when the calcination temperature increases beyond specific temperature. SEM images revealed the agglomerated spherical shapes of the product. XRD results were shown the crystalline sizes of TiO2 decreased depending on high Mn doping due to the influence of Mn charge and ionic radius incorporated into Ti lattice. The optical spectra of doped products exhibit a noticeable red shift of absorption edge toward visible region. This occurrence may imply the decrease of the optical band gap with increasing Mn doping content.

Article Details

How to Cite
1.
Junlabhut P, Nuthongkum P. Structural and Optical Properties of Co-precipitated Mn-doped TiO2 Nanoparticles. Thai J. Nanosci. Nanotechnol. [Internet]. 2016 Jun. 30 [cited 2024 Dec. 27];1(1):1-7. Available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/32
Section
Research Articles

References

L. Samet, J. Ben Nasseur, R. Chtourou, K. March and O. Stephan. Materials Characterization 85 (2013), 1-12.

R. Chauhan, A. Kumar and R.P. Chaudhary. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 98 (2012), 256-264.

V.D. Binas, K. Sombani, T. Maggos, A. katsanaki and G. Kiriakidis. Applied Catalysis B: Environmental 113-114 (2012), 79-86.

V.C. Papadimitriou, V.G. Stefanopoulos, M.N. Romanias, P. Papagiannakopoulos, K.

Sambani, V. Tudose and G. kiriakidis. Thin Solid Films S20 (2011), 1195-1201.

Y.F. Zhao, C. Li, S. Lu, R.X. Liu, J.Y. Hu, Y.Y. Gong and L.Y. Niu, Journal of Solid State Chemistry 235 (2016), 160-168.

G.S. Mital and T. Manoj, Science Bulletin 56 (2011), 1639–1657.

X. Xue, W. Ji, Z. Mao, Z. Li, W. Ruan, B. Zhao and J.R. Lombardi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 95 (2012), 213-217.

G. Kiriakidis. Journal of the Korean Physical Society 65 No. 3 (2014), 1-6.

P. Junlabhut, C. Wattanawikkam, W. Phoohinkong, W. Mekprasart, W. Pecharapa, Key Engineering Materials 675-676 (2016), 97-100.

D. Peng, L. Fa-Min, Z. Chuang-Cang, Z. Wen-Wu, Z. Huan, C. Lu-Gang and Z. LeGui. Chinese Physics B. 19 No. 11 (2010), 1188102.

S. Paul and A. Choudhury. International Journal of Innovative Research and Development 1 issue 7 (2012), 24-31.

A. Perez-Larios, A. Hernandez-Gordillo, G. Morales-Mendoza, L. Lartundo-Rojas, A. Mantilla and R. Gomez. Catalysis Today 266 (2016), 9-16.