Characterization of Erbium and Ytterbium Co-doped TiO2 Synthesized Using the Sol-gel Process for Photon Up-conversion Applications

Main Article Content

Viriya Laohakul
Kanokthip Boonyarattanakalin
Wanichaya Mekprasart
Weerachon Phoohinkong

Abstract

TiO2-based up-conversion materials dually doped with 0.2%Er3+ and 10/12%Yb3+ were synthesized using the sol-gel method. The samples were subjected to a calcination process at 500 °C for 2 hr. X-ray diffraction, scanning electron microscopy, UV-VIS diffuse reflectance spectroscopy, and X-Ray Photoelectron Spectroscopy were employed to investigate the effect of dopant concentration on the morphology, crystal structure, and up-conversion properties of the prepared samples. The results indicate that the prepared doped samples retained the anatase TiO2 crystalline phase and did not show any significant difference in morphology. Moreover, the band gap energy of TiO2 was found to decrease from the typical 3.2 eV (pristine TiO2) to 3.17 and 3.03 eV for the 0.2%Er3+ with 10 and 12%Yb3+ dopants, respectively, which can be attributed to the presence of Yb4f valence edge states. The Er4f state exhibited a transition absorption state in the near-infrared light range, indicating its crucial role in the potential up-conversion mechanism of the prepared doped samples.

Article Details

How to Cite
1.
Laohakul V, Boonyarattanakalin K, Mekprasart W, Phoohinkong W. Characterization of Erbium and Ytterbium Co-doped TiO2 Synthesized Using the Sol-gel Process for Photon Up-conversion Applications. Thai J. Nanosci. Nanotechnol. [Internet]. 2023 Jun. 26 [cited 2025 Jan. 14];8(1):1-10. Available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/83
Section
Research Articles

References

De Angelis F, Di Valentin C, Fantacci S, Vittadini A, Selloni A. Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem. Rev. 2014;114(19):9708-53.

Bourikas K, Kordulis C, Lycourghiotis A. Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 2014;114(19):9754-823.

Kapilashrami M, Zhang Y, Liu Y-S, Hagfeldt A, Guo J. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 2014;114(19):9662-707.

Nosaka Y, Nosaka AY. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017;117(17):11302-36.

Yang X, Wang D. Photocatalysis: from fundamental principles to materials and applications. ACS Appl. Energy Mater. 2018;1(12):6657-93.

Zhao J, Xu J, Jian X, Xu J, Gao Z, Song Y-Y. NIR light-driven photocatalysis on amphiphilic TiO2 nanotubes for controllable drug release. ACS Appl. Mater. Interfaces 2020;12(20):23606-16.

Qiu Z, Shu J, Tang D. NaYF4 :Yb,Er upconversion nanotransducer with in situ fabrication of Ag2S for near-infrared light responsive photoelectrochemical biosensor. Anal. Chem. 2018;90(20):12214-20.

Wang Q, Domen K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 2020;120(2):919-85.

Maeda K. Z-Scheme Water splitting using two different semiconductor photocatalysts. ACS Catal. 2013;3(7):1486-503.

Li K, Peng B, Peng T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016;6(11):7485-527.

Ma Y, Wang X, Jia Y, Chen X, Han H, Li C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014;114(19):9987-10043.

Reszczyńska J, Grzyb T, Sobczak JW, Lisowski W, Gazda M, Ohtani B, et al. Visible light activity of rare earth metal doped (Er3+, Yb 3+ or Er3+/Yb3+) titania photocatalysts. Appl. Catal., B Environ. 2015;163:40-9.

Bhethanabotla VC, Russell DR, Kuhn JN. Assessment of mechanisms for enhanced performance of Yb/Er/titania photocatalysts for organic degradation: Role of rare earth elements in the titania phase. Appl. Catal., B Environ. 2017;202:156-64.

Challagulla S, Tarafder K, Ganesan R, Roy S. Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci. Rep. 2017;7(1):8783.

Buchalska M, Kobielusz M, Matuszek A, Pacia M, Wojtyła S, Macyk W. On oxygen Activation at Rutile- and Anatase-TiO2. ACS Catal. 2015;5(12):7424-31.

Junkar I, Kulkarni M, Benčina M, Kovač J, Mrak-Poljšak K, Lakota K, et al. Titanium dioxide nanotube arrays for cardiovascular stent applications. ACS Omega 2020;5(13): 7280-9.

Vázquez-López A, Maestre D, Martínez-Casado R, Ramírez-Castellanos J, Píš I, Nappini S, et al. Unravelling the role of lithium and nickel doping on the defect structure and phase transition of anatase TiO 2 nanoparticles. J . Mater. Sci. 2022;57(14):7191-207.

Xu T, Wu H, Cui K, Zhao Q, Huang J, Wei L, et al. Hybrid TiO2 /WO 3 nanoparticles fabricated via a sol-gel process using amphiphlic poly(ε-caprolactone)-blockpoly(acrylic acid) diblock copolymer as template and their high visible light photocatalytic activity. SN Appl. Sci. 2019;1(8):866.

Zatsepin DA, Boukhvalov DW, Gavrilov NV, Zatsepin AF, Shur VY, Esin AA, et al. Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO2 -host by Pb-implantation: XPS-and-DFT characterization. Appl. Surf. Sci. 2017;400:110-7.

Nemoshkalenko VV, Borisenko SV, Uvarov VN, Yaresko AN, Vakhney AG, Senkevich AI, et al. Electronic structure of the R2 Ti2 O 7 (R=Sm–Er, Yb, Lu) oxides. Phys. Rev. B 2001;63(7):075106.

Yildirim S, Yurddaskal M, Dikici T, Aritman I, Ertekin K, Celik E. Structural and luminescence properties of undoped, Nd 3+ and Er 3+ doped TiO 2 nanoparticles synthesized by flame spray pyrolysis method. Ceram. Int. 2016;42(9):10579-86.

Trabelsi F, Mercier F, Blanquet E, Crisci A, Salhi R. Synthesis of upconversion TiO2 :Er3+ -Yb 3+ nanoparticles and deposition of thin films by spin coating technique. Ceram. Int. 2020;46(18, Part A):28183-92.

Rao Z, Xie X, Wang X, Mahmood A, Tong S, Ge M, et al. Defect Chemistry of Er3+ Doped TiO 2 and Its Photocatalytic Activity for the Degradation of Flowing Gas-Phase VOCs. J. Phys. Chem. C 2019;123(19):12321-34.

Jiang X, Li C, Liu S, Zhang F, You F, Yao C. The synthesis and characterization of ytterbium-doped TiO 2 hollow spheres with enhanced visible-light photocatalytic activity. RSC Advances. 2017;7(40):24598-606.

Mazierski P, Roy JK, Mikolajczyk A, Wyrzykowska E, Grzyb T, Caicedo PNA, et al. Systematic and detailed examination of NaYF4 -Er-Yb-TiO 2 photocatalytic activity under Vis–NIR irradiation: Experimental and theoretical analyses. Appl. Surf. Sci. 2021;536:147805.

Chen F-H, Her J-L, Shao Y-H, Matsuda YH, Pan T-M. Structural and electrical characteristics of high-κ Er2 O 3 and Er2 TiO 5 gate dielectrics for a-IGZO thin-film transistors. Nanoscale Res. Lett. 2013;8(1):18.

Phoohinkong W, Pavasupree S, Mekprasart W, Pecharapa W. Synthesis of low-cost titanium dioxide-based heterojunction nanocomposite from natural ilmenite and leucoxene for electrochemical energy storage application. Curr. Appl Phys. 2018;18:S44-S54.

Zheng Y, Wang W. Electrospun nanofibers of Er 3+ -doped TiO 2 with photocatalytic activity beyond the absorption edge. J. Solid State Chem. 2014;210(1):206-12.