Photoacoustic Effect of CdS Quantum Dot on TiO2

Main Article Content

Tonnum Sujjaritturakarn
Surachart Kamondilok
Pichet Limsuwan
Witoon Yindeesuk

Abstract

The photoacoustic (PA) effect of cadmium sulfide (CdS) quantum dots on titanium dioxide (TiO2) prepared by successive ionic layer adsorption and reaction (SILAR) method was investigated. The CdS quantum dots were deposited over TiO2 nanoparticles and CdS: TiO2 films with different SILAR cycles (0, 2, 4, 6, 8 cycles). The results of maximum acoustic signals were 179.8, 196.8, 221.5, 235.4, and 253.9 µV, respectively. In addition, the corresponding energy band gap values were 3.34, 2.82, 2.55, 2.5, and 2.35 eV, respectively. The results of the PA measurement showed that the increased number of SILAR cycles improved the visible absorption, and the greatest absorbance at a wavelength of 490 nm is affected by the CdS bandgap energy. The lower the energy band gap, the more absorbance wavelength deviates towards a longer wavelength.

Article Details

How to Cite
1.
Sujjaritturakarn T, Kamondilok S, Limsuwan P, Yindeesuk W. Photoacoustic Effect of CdS Quantum Dot on TiO2. Thai J. Nanosci. Nanotechnol. [Internet]. 2022 Jun. 28 [cited 2024 Dec. 27];7(1):23-9. Available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/79
Section
Research Articles

References

Tian J, Gao R, Zhang Q, Zhang S, Li Y, Lan J, et al. Enhanced performance of CdS/CdSe quantum dot cosensitized solar cells via homogeneous distribution of quantum dots in TiO2 film. J. Phys. Chem. C 2012;116(35):18655-62.

Barbé CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, et al. Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc. 2005; 80(12)3157-71.

Yella A, Lee H-W, Nok Tsao H, Yi C, Kumar Chandiran A, Nazeeruddin M, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011;334(6056):629-34.

Kim J, Choi H, Nahm C, Moon J, Kim C, Nam S, et al. The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells. J. Power Sources 2011;196(23):10526-31.

Panigrahi S, Basak D. Morphology driven ultraviolet photosensitivity in ZnO-CdS composite. J. Colloid Interface Sci. 2011;364(1):10-7.

Plass R, Pelet S, Krueger J, Grätzel M, Bach U. Quantum dot sensitization of organicinorganic hybrid solar cells. J. Phys. Chem. B 2002;106(31):7578-80.

Hoyer P, Könenkamp R. Photoconduction in porous TiO2 sensitized by PbS quantum dots. Appl. Phys. Lett. 1995;66(3):349-51.

Robel I, Subramanian V, Kuno M, Kamat P V. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO 2 films. J. Am. Chem. Soc. 2006;128(7):2385-93.

Shen Q, Kobayashi J, Diguna LJ, Toyoda T. Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 2008;103(8): 0843041-5.

González-Pedro V, Xu X, Mora-Seró I, Bisquert J. Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 2010;4(10):5783-90.

Zhu G, Pan L, Xu T, Sun Z. CdS/CdSe-cosensitized TiO2 photoanode for quantum-dotsensitized solar cells by a microwave-assisted chemical bath deposition method. ACS Appl. Mater. Interfaces 2011 Aug 24;3(8):3146-51.

Li J, Wu N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015;5(3):1360-84.

Jun HK, Careem MA, Arof AK. Fabrication, characterization, and optimization of CdS and CdSe quantum dot-sensitized solar cells with quantum dots prepared by successive ionic layer adsorption and reaction. Int. J. Photoenergy 2014;2014:1-14.

Mughal F, Muhyuddin M, Rashid M, Ahmed T, Akram MA, Basit MA. Multiple energy applications of quantum-dot sensitized TiO2 /PbS/CdS and TiO2 /CdS/PbS hierarchical nanocomposites synthesized via p-SILAR technique. Chem. Phys. Lett. 2019;717:69-76.

Senthamilselvi V, Ravichandran K, Saravanakumar K. Influence of immersion cycles on the stoichiometry of CdS films deposited by SILAR technique. J. Phys. Chem. Solids 2013;74(1):65-9.

Luo C, Narayanaswamy A, Chen G, Joannopoulos JD. Thermal radiation from photonic crystals: A direct calculation. Phys. Rev. Lett. 2004;93(21):19-22.

Rosencwaig A, Gersho A. Theory of the photoacoustic effect with solids. J. Appl. Phys. 1976;47(1):64-9.

Weckhuysen BM. Snapshots of a working catalyst: possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem. Commun. 2002;2:97-110.