Influence of Mesoporous Titanium Dioxide Layer on Perovskite Solar Cell Efficiency

Main Article Content

Tanapornchai Lertkittimasak
Samuk Pimanpang
Pichet Limsuwan
Witoon Yindeesuk

Abstract

This article studied mesoporous TiO2 on the power conversion efficiency of perovskite solar cells by fabricating TiO2 paste instead of prefabricated TiO2, cutting the hole-transport layer, and using carbon instead of gold electrodes. The fabricated perovskite solar cells (PSCs) feature FTO glass/compact TiO2/mesoporous TiO2/CH3NH3PbI3/carbon electrodes. The mesoporous TiO2 layer was prepared from anatase TiO2 and dissolved in ethanol at the ratios of 2.63, 1.27, 0.65, and 0.32%, respectively. The best perovskite solar cell efficiency was obtained using a mesoporous TiO2 cell at a concentration of 1.27% with an open-circuit voltage (Voc) of 0.41 V, short-circuit current density (Jsc) of 3.48 mA/cm2, fill factor (FF) of 0.3, and power conversion efficiency (PCE) of 0.44%.

Article Details

How to Cite
1.
Lertkittimasak T, Pimanpang S, Limsuwan P, Yindeesuk W. Influence of Mesoporous Titanium Dioxide Layer on Perovskite Solar Cell Efficiency. Thai J. Nanosci. Nanotechnol. [Internet]. 2022 Jun. 27 [cited 2025 Jan. 14];7(1):12-2. Available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/78
Section
Research Articles

References

Richter A, Hermle M, Glunz SW. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovoltaics 2013;3(4):1184-91.

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visiblelight sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009;131(17):6050-1.

US National Renewable Energy Laboratory. Catalysis from A to Z. 2020.

Dennler G, Scharber MC, Brabec CJ. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2009;21(13):1323-38.

Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013;342(6156):341-4.

Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat. Photonics 2014;8(7):506-14.

Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 2014;26(10): 1584-9.

Fan J, Jia B, Gu M. Perovskite-based low-cost and high-efficiency hybrid halide solar cells. Photonics Res. 2014;2(5):111-20.

Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015;347(6221):519-22.

Nelson J. Organic photovoltaic films.Curr. Opin. Solid State Mater. Sci. 2002;6:87-95.

Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. science. 2012;338 (6107):643-7.

Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012;2:1-7.

Liao HC, Lee CH, Ho YC, Jao MH, Tsai CM, Chuang CM, et al. Diketopyrrolopyrrolebased oligomer modified TiO2 nanorods for air-stable and all solution processed poly(3hexylthiophene):TiO2 bulk heterojunction inverted solar cell. J. Mater. Chem. 2012; 22(21):10589-96.

Aharon S, Gamliel S, Cohen B El, Etgar L. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 2014; 16(22):10512-8.

Tavakoli MM, Yadav P, Tavakoli R, Kong J. Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability. Adv. Energy Mater. 2018;8(23):1-9.

Kırbıyık Ç, Can M, Kuş M. Interfacial modification via boronic acid functionalized self-assembled monolayers for efficient inverted polymer solar cells. Mater. Sci. Semicond. Process. 2020;107:104860.