Application of Laser-induced Thermal Emission in Imaging of Rough Surface Relief

Main Article Content

Kateryna Zelenska
Olga Tkach
Serge Zelensky
Olexandr Kolesnik
Toru Aoki

Abstract

For visualization of the microstructure of rough surfaces, a technique based on laserinduced heating of subsurface layers and observation of accompanying thermal emission is proposed. Transient temperature fields in the subsurface layers of a rough carbon surface and its time-integrated radiant exitance were calculated. A roughness element on a surface was given as a submicrometer-sized truncated-cone-shaped hole and peak. Computer simulations showed that local radiant exitance tenfold varied along the surface. This was due to (1) limited heat distribution at the peak tops and (2) enhanced heat outflow into the subsurface layer at the foot of a roughness hill (i) as well as at the bottom of the cavity in the vicinity of its walls (ii). In experiments, variations in the local radiant exitance on a rough carbon surface under pulse laser excitation were confirmed. The obtained photo images of rough carbon surfaces under laser irradiation were revealed to be high-contrast and suitable for the estimation of surface roughness employing a common optical microscope.

Article Details

How to Cite
1.
Zelenska K, Tkach O, Zelensky S, Kolesnik O, Aoki T. Application of Laser-induced Thermal Emission in Imaging of Rough Surface Relief. Thai J. Nanosci. Nanotechnol. [Internet]. 2021 Jun. 28 [cited 2024 Nov. 22];6(1):16-25. Available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/74
Section
Research Articles

References

Galán-Freyle NJ, Pacheco-Londono LC, Figueroa-Navedo AM, Hernandez-Rivera SP. Standoff detection of highly energetic materials using laser-induced thermal excitation of infrared emission. Appl. Spectrosc. Rev. 2015;69(5):535-44.

Lin LT, Archibald DD, Honigs DE. Preliminary studies of laser-induced thermal emission spectroscopy of condensed phases. Appl. Spectrosc. Rev. 1988;42(3): 477-83.

Tsuge A, Uwamino Y, Ishizuka T. Applications of laser-induced thermal emission spectroscopy to various samples. Appl. Spectrosc. Rev. 1989;43(7):1145-9.

Zelensky S, Kolesnik A, Kopyshinsky A, Garashchenko V, Zelenska K, Stadnytsky V, Shinkarenko E. Thermal emission of carbon microparticles in polymer matrixes under pulsed laser excitation. Ukr. J. Phys. 2009;54(10):983-8.

S. Zelensky, Laser-induced heat radiation in borate glass. J. Phys.: Condens. Matter 1998;10(32):7267-72.

Zelensky S, Aoki T. Decay kinetics of thermal emission of surface layers of carbon materials under pulsed laser excitation, Opt. Spectrosc. 2019;127:931-7.

Zelensky S. Laser-induced heat radiation of suspended particles: a method for temperature estimation. J. Opt. A: Pure Appl. Opt. 1999;1 :454-8.

Hofmann M, Bessler WG, Schulz C, Jander H. Laser-induced incandescence for soot diagnostics at high pressures. Appl. Opt. 2003;42(12):2052-62.

Michelsen HA. Laser-induced incandescence of flame-generated soot on a picosecond time scale, Appl. Phys. B 2006;83(3):443-8.

Vander Wal RL, Ticich TM, Stephens A. Can soot primary particle size be determined using laser-induced incandescence? Combust. Flame 1999;116:291-6.

Michelsen HA, Schulz C, Smallwood GJ, Will S. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 2015;51:2-48.

Rulik JJ, Mikhailenko NM, Zelensky SE, Kolesnik AS. Laser-induced incandescence in aqueous carbon black suspensions: the role of particle vaporization. Semicond. Phys. Quantum Electron. Optoelectron. 2007;10(2):6-10.

Zelenska KS, Zelensky SE, Poperenko LV, Kanev K, Mizeikis V, Gnatyuk VA. Thermal mechanisms of laser marking in transparent polymers with light-absorbing microparticles. Opt. Laser Technol. 2016;76:96-100.

Karpovych V, Zelenska K, Yablochkov S, Zelensky S, Aoki T. Evolution of laserinduced incandescence of porous carbon materials under irradiation by a sequence of laser pulses. Thai J. Nanosci. Nanotechnol. 2017;2(2):14-20.

Karpovych V, Tkach O, Zelenska K, Zelensky S, Aoki T. Laser-induced thermal emission of rough carbon surfaces. J. Laser Appl. 2020;32(1):012010.

Zelenska KS, Kopyshinsky AV, Poperenko LV. Laser-induced incandescence of carbon surface at various values of ambient air pressure. Proc. IEEE, Fotonica AEIT Italian Conference on Photonics Technologies;2014 May 12-14; Naples Italy. Napoli: 2014. p.1-3.

Zelensky S, Zelenska K. Laser-induced incandescence of carbon surface: a method for temperature estimation, Proc. SPIE Int. Soc. Opt. Eng. 2013;8772:1-8.

Kokhan M, Koleshnia I, Zelensky S, Aoki T. On the possibility of visualization of undersurface submicron-sized inhomogeneities via laser-induced incandescence of surface layers. Proc. High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VI. 2017;100970:1-7.

Zelensky S, Poperenko L, Kopyshinsky A, Zelenska K. Nonlinear characteristics of laser-induced incandescence of rough carbon surfaces. Proc. Nonlinear Optics and Applications VI. 2012;84341:1-6.

Kopyshinsky AV, Zelensky SE, Gomon EA, Rozouvan SG, Kolesnik AS. Laserinduced incandescence of silicon surface under 1064-nm excitation. Semicond. Phys. Quantum Electron. Optoelectron. 2012;15(4):376-81.

Ho CY, Powell RW, Liley PE. Thermal conductivity of the elements: A comprehensive review. J. Phys. Chem. Ref. Data 1974;3:1–756.

Butland ATD, Maddison RJ. The specific heat of graphite: An evaluation of measurements. J. Nucl. Mater. 1973;49:45-56.

McDonald RA. Heat content and heat capacity of an extruded graphite from 341° to 1723°K. J. Chem. Eng. Data 1965;10:243.