Manganese Oxide Carbon Nanocomposite from Manganese Oxide Nanoparticles and Cellulose Carbonization for Electrochemical Energy Storage Applications
Main Article Content
Abstract
The synthesis of manganese oxide embedded carbon nanocomposite by direct carbonization of nano-sized manganese oxide/cellulose hybrid nanocomposite is reported. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize surface phase structure and chemical states. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) were used to study its particle size, structure, and composite morphology. Cyclic voltammetry (CV) was used to study the electrochemical capacitor activity of the electro-active sample. Manganese oxide cellulose hybrid nanocomposite exhibits the existence of manganese oxide nanoparticles (≈50 nm) that are well assembled and homogeneously dispersed in carbon after the carbonization process. The mixed-valence states of Mn3O4 hausmannite with different Mn ionic species of Mn2+, Mn3+, and Mn4+ were obtained at the carbonized surface sample. The improvement of electrochemical performance of the prepared manganese oxide carbon nanocomposite sample may attribute to various oxidation levels, and increased conductivity via strong bonding between manganese oxide and carbon leading to feasibility for application of supercapacitor electrode material.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Wu T-H, Hesp D, Dhanak V, Collins C, Braga F, Hardwick LJ, et al. Charge storage mechanism of activated manganese oxide composites for pseudocapacitors. J. Mater. Chem. A 2015;3:12786-95.
Jiang H, Zhao T, Yan C, Ma J, Li C. Hydrothermal synthesis of novel Mn3 O 4 nanooctahedrons with enhanced supercapacitors performances. Nanoscale. 2010;2:2195-8.
Dubal DP, Dhawale DS, Salunkhe RR, Pawar SM, Fulari VJ, Lokhande CD. A novel chemical synthesis of interlocked cubes of hausmannite Mn3 O 4 thin films for supercapacitor application. J. Alloys Compd. 2009;484:218-21.
Dubal DP, Jagadale AD, Lokhande CD. Big as well as light weight portable, Mn3 O4 based symmetric supercapacitive devices: Fabrication, performance evaluation and demonstration. Electrochim. Acta 2012;80:160-70.
Yousefi T, Golikand A, Mashhadizadeh MH, Aghazadeh M. High temperature and low current density synthesis of Mn3 O 4 porous nano spheres: Characterization and electrochemical properties. Curr. Appl Phys. 2012;12:544-9.
Luo Y, Yang T, Li Z, Xiao B, Zhang M. High performance of Mn3 O 4 cubes for supercapacitor applications. Mater. Lett. 2016;178:171-4.
Makgopa K, Raju K, Ejikeme PM, Ozoemena KI. High-performance Mn3 O4 /onion-like carbon (OLC) nanohybrid pseudocapacitor: Unravelling the intrinsic properties of OLC against other carbon supports. Carbon 2017;117:20-32.
Ullah Shah H, Wang F, Sufyan Javed M, Shaheen N, Ali S, Ashfaq Ahmad M, et al. Mn3 O 4 nanosheets decorated on flexible carbon fabric for high-performance supercapacitors electrode. Mater. Lett. 2018;210:148-52.
Bùi MP, Song J-H, Li Z-Y, Akhtar MS, Yang OB. Low temperature solution processed Mn3 O 4 nanoparticles: Enhanced performance of electrochemical supercapacitors. J. Alloys Compd. 2016;694:560-7.
Mondal C, Ghosh D, Aditya T, Sasmal AK, Pal T. Mn3 O 4 nanoparticles anchored to multiwall carbon nanotubes: a distinctive synergism for high-performance supercapacitors. New J. Chem. 2015;39:8373-80.
Wu Y, Liu S, Wang H, Wang X, Zhang X, Jin G. A novel solvothermal synthesis of Mn3 O4 /graphene composites for supercapacitors. Electrochim. Acta 2013;90:210-8.
Yao J, Yao S, Gao F, Duan L, Niu M, Liu J. Reduced graphene oxide/Mn3 O 4 nanohybrid for high-rate pseduocapacitive electrodes. J. Colloid Interface Sci. 2018;511:434-9.
Wang L, Li Y, Han Z, Chen L, Qian B, Jiang X, et al. Composite structure and properties of Mn3 O4 /graphene oxide and Mn3 O4 /graphene. J. Mater. Chem. A 2013;1:8385-97.
Gund GS, Dubal DP, Patil BH, Shinde SS, Lokhande CD. Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3 O 4 composite for high performance supercapacitors. Electrochim. Acta 2013;92:205-15.
Wang B, Park J, Wang C, Ahn H, Wang G. Mn3 O 4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors. Electrochim. Acta 2010;55:6812-7.
He S, Hu C, Hou H, Chen W. Ultrathin MnO 2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors. J. Power Sources 2014;246:754-61.
Ma M-G, Deng F, Yao K. Manganese-containing cellulose nanocomposites: The restrain effect of cellulose treated with NaOH/urea aqueous solutions. Carbohydr. Polym. 2014;111:230-5.
Fu L-H, Li S-M, Bian J, Ma M-G, Long X-L, Zhang X-M, et al. Compare study cellulose/Mn3 O 4 composites using four types of alkalis by sonochemistry method. Carbohydr. Polym.. 2015;115:373-8.
Zhu C, Han C-g, Saito G, Akiyama T. Facile synthesis of MnO/carbon composites by a single-step nitrate-cellulose combustion synthesis for Li ion battery anode. J. Alloys Compd. 2016;689:931-7.
Phoohinkong W, Sukonket T. Preparation of Nanosized Manganese Oxide Particles via Solid-State Route Reaction. Key Eng. Mater. 2016;675-676:146-9.
Sofla MRK, Brown RJ, Tsuzuki T, Rainey TJ. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2016;7:035004.
Lam NT, Chollakup R, Smitthipong W, Nimchua T, Sukyai P. Characterization of Cellulose Nanocrystals Extracted from Sugarcane Bagasse for Potential Biomedical Materials. Sugar Tech 2017;19:539-52.
Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Fast and reversible surface redox reaction of graphene–MnO 2 composites as supercapacitor electrodes. Carbon 2010; 48:3825-33.
Qi Z, Younis A, Chu D, Li S. A Facile and Template-Free One-Pot Synthesis of Mn3 O4 Nanostructures as Electrochemical Supercapacitors. Nano-Micro Lett. 2016; 8:165-73.
Gilbert B, Frazer BH, Belz A, Conrad PG, Nealson KH, Haskel D, et al. Multiple Scattering Calculations of Bonding and X-ray Absorption Spectroscopy of Manganese Oxides. J. Phys. Chem. A 2003;107:2839-47.
Farges F. Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials. Phys. Rev. B 2005;71:155109.
Liu J, Liu J, Song W, Wang F, Song Y. The role of electronic interaction in the use of Ag and Mn3 O 4 hybrid nanocrystals covalently coupled with carbon as advanced oxygen reduction electrocatalysts. J. Mater. Chem. A 2014;2:17477-88.
Chalmin E, Farges F, Brown GE. A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses. Contrib. Mineral. Petrol. 2009;157:111-26.
Manceau A, Gorshkov AI, Drits V. Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides; Part II, information from EXAFS spectroscopy and electron and X-ray diffraction. Am. Mineral. 1992;77:1144-57.
Buciuman F, Patcas F, Craciun R, R. T. Zahn D. Vibrational spectroscopy of bulk and supported manganese oxides. Phys. Chem. Chem. Phys. 1999;1:185-90.
Kirillov SA, Aleksandrova VS, Lisnycha TV, Dzanashvili DI, Khainakov SA, García JR, et al. Oxidation of synthetic hausmannite (Mn3 O4 ) to manganite (MnOOH). J. Mol. Struct. 2009;928:89-94.
Li F, Wu J, Qin Q, Li Z, Huang X. Facile synthesis of γ-MnOOH micro/nanorods and their conversion to β-MnO2 , Mn3 O4 . J. Alloys Compd. 2010;492:339-46.
Zhang WX, Yang ZH, Liu Y, Tang SP, Han XZ, Chen M. Controlled synthesis of Mn3 O4 nanocrystallites and MnOOH nanorods by a solvothermal method. J. Cryst. Growth 2004;263:394-9.
Kohler T, Armbruster T, Libowitzky E. Hydrogen Bonding and Jahn–Teller Distortion in Groutite,α-MnOOH, and Manganite,γ-MnOOH, and Their Relations to the Manganese Dioxides Ramsdellite and Pyrolusite. J. Solid State Chem. 1997;133: 486-500.
Kondo T, Sawatari C. A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 1996;37:393-9.
Ren LZ, Zhou WQ, Wang YJ, Meng M, Wu SX, Li SW. Magnetic properties of Mn3 O4 film with a coexistence of two preferential orientations. J. Appl. Phys. 2014;116:243-9.
Wu KH, Zeng QC, Zhang BS, Leng X, Su DS, Gentle IR, et al. Structural Origin of the Activity in Mn3 O4 -Graphene Oxide Hybrid Electrocatalysts for the Oxygen Reduction Reaction. Chemsuschem 2015;8:3331-9.
Zhang LS, Zhao LJ, Lian JS. Nanostructured Mn3 O4 -reduced graphene oxide hybrid and its applications for efficient catalytic decomposition of Orange II and high lithium storage capacity. RSC Adv. 2014;4:41838-47.
Bose VC, Biju V. Mixed valence nanostructured Mn3 O 4 for supercapacitor applications. Bull. Mater. Sci. 2015;38:865-73.
Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015;6:6682.
Quan B, Yu SH, Chung DY, Jin AH, Park JH, Sung YE, et al. Single Source Precursorbased Solvothermal Synthesis of Heteroatom-doped Graphene and Its Energy Storage and Conversion Applications. Sci. Rep. 2014;4:5639.
Ganguly A, Sharma S, Papakonstantinou P, Hamilton J. Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies. J. Phys. Chem. C 2011;115:17009-19.
Ishizaki T, Wada Y, Chiba S, Kumagai S, Lee H, Serizawa A, et al. Effects of halogen doping on nanocarbon catalysts synthesized by a solution plasma process for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 2016;18:21843-51.
Wong CHA, Pumera M. Highly conductive graphene nanoribbons from the reduction of graphene oxide nanoribbons with lithium aluminium hydride. J. Mater. Chem. C 2014;2:856-63.
Khiari R, Salon MCB, Mhenni MF, Mauret E, Belgacem MN. Synthesis and characterization of cellulose carbonate using greenchemistry: Surface modification of Avicel. Carbohydr. Polym. 2017;163:254-60.
Peng X, Shen SG, Wang CY, Li TJ, Li YH, Yuan SJ, et al. Influence of relative proportions of cellulose and lignin on carbon-based solid acid for cellulose hydrolysis. Mol. Catal. 2017;442:133-9.
Chavez-Guerrero L, Sepulveda-Guzman S, Silva-Mendoza J, Aguilar-Flores C, PerezCamacho O. Eco-friendly isolation of cellulose nanoplatelets through oxidation under mild conditions. Carbohydr. Polym. 2018;181:642-9.
Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff' RS. Graphene oxide papers modified by divalent ions - Enhancing mechanical properties via chemical cross-linking. Acs Nano 2008;2:572-8.
Tang MM, Bacon R. Carbonization of cellulose fibers—I. Low temperature pyrolysis. Carbon. 1964;2:211-20.
Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37:1379-89.
Song YZ, Zhao RX, Zhang KK, Ding JJ, Lv XM, Chen M, et al. Facile synthesis of Mn3 O4 /double-walled carbon nanotube nanocomposites and its excellent supercapacitive behavior. Electrochim. Acta 2017;230:350-7.
Yang ZL, Lu DL, Zhao RR, Gao AM, Chen HY. Synthesis of a novel structured Mn3 O4 @C composite and its performance as anode for lithium ion battery. Mater. Lett. 2017;198:97-100.
Gao T, Krumeich F, Nesper R, Fjellvag H, Norby P. Microstructures, Surface Properties, and Topotactic Transitions of Manganite Nanorods. Inorg. Chem. 2009;48:6242-50.
Oh YJ, Yoo JJ, Kim YI, Yoon JK, Yoon HN, Kim JH, et al. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim. Acta 2014;116:118-28.
Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. Adv. 2011;257:2717-30.
Wei WF, Cui XW, Chen WX, Ivey DG. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011;40:1697-721.
Ribeiro RAP, de Lazaro SR, Pianaro SA. Density Functional Theory applied to magnetic materials: Mn3 O 4 at different hybrid functionals. J. Magn. Magn. Mater. 2015;391: 166-71.
Smith PF, Deibert BJ, Kaushik S, Gardner G, Hwang SJ, Wang H, et al. Coordination Geometry and Oxidation State Requirements of Corner-Sharing MnO 6 Octahedra for Water Oxidation Catalysis: An Investigation of Manganite (gamma-MnOOH). Acs Catal. 2016;6:2089-99.
Nesbitt HW, Banerjee D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO 2 precipitation. Am. Mineral. 1998;83:305-15.
Gupta RP, Sen SK. Calculation of multiplet structure of core p-vacancy levels. Phys. Rev. B 1974;10:71-7.
Gupta RP, Sen SK. Calculation of multiplet structure of core p-vacancy levels. II. Phys. Rev. B 1975;12:15-9.
Oku M, Hirokawa K, Ikeda S. X-ray photoelectron spectroscopy of manganese -oxygen systems. J. Electron. Spectrosc. Relat. Phenom. 1975;7:465-73.
Oku M, Hirokawa K. X-ray photoelectron spectroscopy of Co3 O4 , Fe3 O4 , Mn3 O4 , and related compounds. J. Electron. Spectrosc. Relat. Phenom. 1976;8:475-81.
Ilton ES, Post JE, Heaney PJ, Ling FT, Kerisit SN. XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 2016;366:475-85.
Grissa R, Martinez H, Cotte S, Galipaud J, Pecquenard B, Le Cras F. Thorough XPS analyses on overlithiated manganese spinel cycled around the 3V plateau. Appl. Surf. Sci. 2017;411:449-56.
Oku M. X-ray photoelectron spectra of KMnO 4 and K2 MnO 4 fractured in situ. J. Electron. Spectrosc. Relat. Phenom. 1995;74:135-48.
Xia XH, Lu L, Walton AS, Ward M, Han XP, Brydson R, et al. Origin of significant visible-light absorption properties of Mn-doped TiO2 thin films. Acta Mater. 2012;60:1974-85.
Aghazadeh M, Maragheh MG, Ganjali MR, Norouzi P. One-step electrochemical preparation and characterization of nanostructured hydrohausmannite as electrode material for supercapacitors. RSC Adv. 2016;6:10442-9.