First-principles Investigation on Structural and Electronic Properties of Cubic Na2O

Main Article Content

Tanisara Noinonmueng
Kanoknan Phacheerak

Abstract

The structural and electronic properties of cubic Na2O were investigated by first-principles calculations. The calculated structural parameters (a, 𝑩0 , and 𝑩'0 ) show a good agreement with the available values. Furthermore, the electronic band structure and density of states were obtained. We found that the cubic Na2O is a direct band gap material. In addition, the electron localized function (ELF) was analyzed to give more explanation of the bonding nature of cubic Na2O. The ELF analysis indicates that the Na-O band is a typical ionic bond. The analysis details were presented and discussed.

Article Details

How to Cite
1.
Noinonmueng T, Phacheerak K. First-principles Investigation on Structural and Electronic Properties of Cubic Na2O. Thai J. Nanosci. Nanotechnol. [Internet]. 2020 Jun. 16 [cited 2024 Dec. 27];5(1):21-6. Available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/67
Section
Research Articles

References

Jamal M, Venugopal G, Shareefuddin M, Chary MN. Sodium ion conducting glasses with mixed glass formers NaI–Na2 O–V2 O5 –B2 O3 : application to solid state battery. Materials Letters. 1999;39(1):28-32.

Cho KI, Lee SH, Cho KH, Shin DW, Sun YK. Li2 O–B2 O3 –P2 O 5 solid electrolyte for thin film batteries. J. Power Sources. 2006;163(1):223-8.

Lee KB, Beaver MG, Caram HS, Sircar S. Performance of Na2 O promoted alumina as CO 2 chemisorbent in sorption-enhanced reaction process for simultaneous production of fuel-cell grade H 2 and compressed CO 2 from synthesis gas. J. Power Sources. 2008; 176(1):312-9.

Zintl E, Harder A, Dauth B. Lattice Structure of the oxides, sulfides, selenides and tellurides of lithium, sodium and potassium. Z Elektrochem. 1934;40:588.

Wu X, Zhang Y, Zhang J, Liu R, Yang J, Yang B, Xu H, Y Ma. High pressure X-ray diffraction study of sodium oxide (Na2 O): Observations of amorphization and equation of state measurements to 15.9 GPa. J. Alloys Compd. 2020;823:153793.

Dovesi R, Roetti C, Freyria-Fara C, Prencipe M, Saunders VR. On the elastic properties of lithium, sodium and potassium oxide. An ab initio study. Chem. Phys. 1991;156:11-9.

Čančarević Z, Schön JC, Jansen M. Stability of alkali-metal oxides as a function of pressure: Theoretical calculations. Phys. Rev. B: Condens. Matter. 2006;73:224114.

Moakafi M, Khenata R, Bouhemadou A, Khachai H, Amrani B, Rached D, Rérat M. Electronic and optical properties under pressure effect of alkali metal oxides. Eur. Phys. J. B. 2008;64(1):35-42.

Thompson M, Shen X, Allen PB. Density functional calculation of electronic structure and phonon spectra of Na2 O. Phys. Rev. B. 2009;79(11):113108.

Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169-86.

Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B: Condens. Matter. 1992; 46(11):6671-87.

Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996;77(18):3865-8.

Blöchl P E. Projector augmented-wave method, Phys. Rev. B: Condens. Matter. 1994;50:17953–79.

Monkhorst J, Pack JD. Special points for Brillouin-zone integrations, Phys. Rev. B: Condens. Matter. 1976; 13:5188 –92.

Birch F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. B: Condens. Matter. 1947; 71(11):809-24.

Murnaghan FD. Finite Deformations of an Elastic Solid. Am. J. Math. 1937;49:235-60.

Murnaghan FD. The Compressibility of Media under Extreme Pressures. Proc Natl Acad Sci U S A. 1944;30:244-7.

Burdett JK, Mc Cormick TA. Electron localization in molecules and solids: The meaning of ELF. J. Phys. Chem. A 1998;102:6366-72.