Spectroscopic Studies of Ni/CdTe/Au Schottky Diode X/γ-ray Detectors
Main Article Content
Abstract
This research is devoted to spectroscopic studies of Ni/CdTe/Au diode detectors with a high barrier Schottky contact at the Ni-CdTe interface and near Ohmic contact at the Au-CdTe interface. Both contacts were formed on the opposite sides of high resistivity CdTe(111) crystals after preliminary chemical and ion etchings. The detectors had low dark current (2-3 nA at 1000 V) and were tested using 137Cs, 57Co and 241 Am isotopes as radiation sources. Quite high energy resolution (0.9%@662keV at 800 V) was obtained in the 137Cs spectrum at room temperature. In the spectra of 57Co and 241Am isotopes an increase in bias voltage resulted in competing processes: efficient collection of photogenerated charge carriers and harmful increase in reverse current. There were optimal values of bias voltages to achieve sufficient detection efficiency and energy resolution of every detector for radiation of different isotopes. The most interesting and important feature of the developed Ni/CdTe/Au Schottky diode detectors was the absence of degradation of the parameters with time. Moreover, the optimization of the spectroscopic characteristics (FWHM, peak counts, peak to valley ratio, peak channel position, etc.) of the Ni/CdTe/Au diode biased and subjected to irradiation from a 137Cs isotope was observed under long time detector operation.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Hage-Ali M, Siffert P. CdTe nuclear detectors and applications. edited by Schlesinger TE, James RB. Semiconductors for room temperature nuclear detector applications. Willardson RK, Beer AC, Weber ER. Followed by Semiconductors and semimetals. Vol.
San Diego: Academic Press.; 1995, 291 p.
Giboni KL, Aprile E. Evaluation of CdTe detectors with Schottky contacts for imaging applications. Nucl. Instrum. Methods Phys. Res. A. 1998;416(2-3):319-327.
Tanaka T, Kobayashi Y, Mitani T, Nakazawa K, Oonuki K, Sato G, Takahashi T, Watanabe S. Recent achievements of the high resolution schottky CdTe diode for γ-ray detectors. New Astron. Rev. 2004;48(1):309-313.
Matsumoto C, Takahashi T, Takizawa K, Ohno R, Ozaki T, Mori K. Performance of a new Schottky CdTe detector for hard X-ray spectroscopy. IEEE Trans. Nucl. Sci. 1998; 45(3):428-432.
Takahashi T, Paul B, Hirose K, Matsumoto S, Ohno R, Ozaki T, Mori K, Tomita Y.
High-resolution schottky CdTe diode for hard X-ray and gamma-ray astronomy. Nucl. Instrum. Methods Phys. Res. A. 1999;436(1-2):111-119.
Takahashi T, Watanabe S. Recent progress in CdTe and CdZnTe detectors. IEEE Trans.
Nucl. Sci. 2001;48(4):950-959.
Sato G, Takahashi T, Sugiho M, Kouda M, Mitani T, Nakazawa K, Okada Y, Watanabe
S. Characterization of CdTe/CdZnTe detectors. IEEE Trans. Nucl. Sci. 2002;49(3): 1258-1263.
Shiraki H, Funaki M, Ando Y, Kominami S, Amemiya K, Ohno R. Improvement of the productivity in the THM growth of CdTe single crystal as nuclear radiation detector. IEEE Trans. Nucl. Sci. 2010;57(1):395-399.
Principato F, Turturici AA, Gallo M, Abbene L. Polarization phenomena in Al/pCdTe/Pt X-ray detectors. Nucl. Instrum. Methods Phys. Res. A. 2013;730:141-145.
Kosyachenko LA, Maslyanchuk OL, Sklyarchuk VM, Grushko EV, Gnatyuk VA, Aoki T, Hatanaka Y. Electrical characteristics of Schottky diodes based on semi-insulating CdTe single crystals. J. Appl. Phys. 2007;101(1):013704.
Kosyachenko LA, Gnatyuk VA, Aoki T, Sklyarchuk VM, Sklyarchuk OF, Maslyanchuk OL. Super high voltage schottky diode with low leakage current for X- and γ-ray detector application. Appl. Phys. Lett. 2009;94(9):092109.
Kosyachenko LA, Aoki T, Lambropoulos CP, Gnatyuk VA, Sklyarchuk VM, Maslyanchuk OL, Grushko EV, Sklyarchuk OF, Koike A. High energy resolution CdTe schottky diode γ -ray detectors. IEEE Trans. Nucl. Sci. 2013;60(4):2845-2852.
Lambropoulos P, Aoki T, Crocco J, Dieguez E, Disch C, Fauler A, Fiederle M, Hatzistratis DS, Gnatyuk VA, Karafasoulis K, Kosyachenko LA, Levytskyi SN, Loukas D, Maslyanchuk OL, Medvids A, Orphanoudakis T, Papadakis I, Papadimitriou A, Potiriadis C, Schulman T, Sklyarchuk VM, Spartiotis K, Theodoratos G, Vlasenko OI, Zachariadou K, Zervakis M. The COCAE detector: an instrument for localization identification of radioactive sources. IEEE Trans. Nucl. Sci. 2011;58(5):2363-2370.
Gnatyuk VA, Vlasenko OI, Aoki T, Koike A. Characteristics and stability of diode type CdTe-based X-ray and gamma-ray detectors. 2014 IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec. 2016:7431267.
Aoki T, Gnatyuk VA, Nakamura A, Tomita Y, Hatanaka Y, Temmyo J. Study of a CdTe high-energy radiation imaging device fabrication by excimer laser processing. Phys. Status Solidi C. 2004;1(4):1050-1053.
Gnatyuk VA, Levytskyi SN, Vlasenko OI, Aoki T. Formation of doped nano-layers in CdTe semiconductor crystals by laser irradiation with nanosecond pulses. Thai J. Nanosci. & Nanotechnol. 2016;1(2):7-16.
Sklyarchuk VM, Gnatyuk VA, Pecharapa W. Low leakage current Ni/CdZnTe/In diodes for X/γ-ray detectors. Nucl. Instrum. Methods Phys. Res. A. 2018;879:101-105.
Sellin PJ, Davies AW, Lohstroh A, Ozsan ME, Parkin J. Drift mobility and mobilitylifetime products in CdTe:Cl grown by the travelling heater method. IEEE Trans. Nucl. Sci. 2005;52(6):3074-3078.
Acrorad. CdTe standard products [internet]. Available from: https://www.acrorad.co.jp/ index_en/products_en/cdte/cdte_products.html