Keratin Protein Modified Anatase TiO2 Nanoparticle Characterizations of Protein Functionalized Surface

Main Article Content

Weerachon Phoohinkong
Tita Foophow
Udomsak Kitthawee

Abstract

Anatase titanium dioxide (TiO2) nanoparticle surface is modified with Keratin, a protein from swine wool. The protein structure and the modified surface of the TiO2 nanoparticle is investigated. The structure and bonding of the adsorbed protein on TiO2 surface were investigated by Fourier-transform infrared spectroscopy (FT-IR). The surface morphology of hybrid nanocomposite was observed by Field Emission Scanning Electron Microscopy (FESEM). Chemical bonding between protein and titanium dioxide was further investigated by X-ray Photoelectron Spectroscopy (XPS). Electrochemical cyclic voltammetry (CV) was used to characterize the electrochemical behaviour the protein modified TiO2. The protein structure conformation and chemical bonding interaction with TiO2 surface critically depend on the protein concentration. The protein is likely adsorbed via the interactions between the methyl, carbonyl, and amines group on the side chains of random coil secondary structure with the anatase TiO2 surface. The protein has strong bonding to TiO2 surface as evidently observed XPS for an environment bonding change in binding energy and component at O1s Ti2p and N1s region. The electrochemical behaviour of keratin protein modulated anatase TiO2 hybrid material shows significant influence by protein structure and/or protein concentration at the surface.

Article Details

How to Cite
1.
Phoohinkong W, Foophow T, Kitthawee U. Keratin Protein Modified Anatase TiO2 Nanoparticle Characterizations of Protein Functionalized Surface. Thai J. Nanosci. Nanotechnol. [Internet]. 2018 Jun. 28 [cited 2024 Dec. 27];3(1):1-9. Available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/48
Section
Research Articles

References

M.-E. Aubin-Tam and K. Hamad-Schifferli, Structure and function of nanoparticleprotein conjugates, Biomed. Mater. 3 (2008) 034001.

A. O. Elzoghby, A. L. Hemasa, M. S. Freag, Hybrid protein-inorganic nanoparticles:

From tumor-targeted drug delivery to cancer imaging, J. Control. Release. 243 (2016) 303-322.

A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. D. Malhotra and S. Bhansali, Organic−Inorganic Hybrid Nanocomposite-Based Gas Sensors for Environmental Monitoring, Chem. Rev. 115 (2015) 4571-4606.

M. Khairy and S. A. El-Safty, Hemoproteins–nickel foam hybrids as effective supercapacitors, Chem. Commun. 50 (2014) 1356-1358.

A. Vallee, V. Humblot, C.-M. Pradier, Peptide Interactions with Metal and Oxide Surfaces, Acc. Chem. Res. 43 (2010) 1297-1306.

G. Liu, H. G. Yang, J.Pan, Y. Q. Yang, G. Q. (M.) Lu, H.-M. Cheng, Titanium Dioxide Crystals with Tailored Facets, Chem. Rev. 114 (2014) 9559–9612.

N. Rahimi, R. A. Pax, E. M.A. Gray, Review of functional titanium oxides. I: TiO 2 and its modifications, Prog. Solid State Chem. 44 (2016) 86-105.

T. Rajh, N. M. Dimitrijevic, M. Bissonnette, T. Koritarov, V. Konda, Titanium Dioxide in the Service of the Biomedical Revolution, Chem. Rev. 114 (2014) 10177–10216.

A. Shavandi, T. H. Silva, A. A. Bekhit, A. El-Din A. Bekhit, Keratin: dissolution, extraction and biomedical application, Biomater. Sci. 5 (2017) 1699-1735.

B. J. G. E. Pieters, M. B. v. Eldijk, R. J. M. Nolte, J. Mecinović, Natural supramolecular protein assemblies, Chemical Society Reviews, 45 (2015) 24-39.

J. M. Galloway and S. S. Staniland, Protein and peptide biotemplated metal and metal oxide nanoparticles and their patterning onto surfaces, J. Mater. Chem. 22 (2012) 12423-12434.

G. Liu, L. Liu, J. Song, J. Liang, Q. Luo, D. Wang, Visible light photocatalytic activity of TiO 2 nanoparticles hybridized by conjugated derivative of polybutadiene, Superlattices Microstruct. 69 (2014)164-174.

M. G. Sowa, J. Wang, C. P. Schultz, M. K. Ahmed, H. H. Mantsc, Infrared spectroscopic investigation of in vivo and ex vivo human nails, Vib. Spectrosc. 10 (1995) 49-56.

J. J. Martin, J. M. Cardamone, P. L. Irwin, E. M. Brown, Keratin capped silver nanoparticles – Synthesis and characterization of a nanomaterial with desirable handling properties, Colloids Surf., B. 88 (2011)354-361.

A. Shavandi, A. Carne, A. A. Bekhit, A. E.-D. A. Bekhit, An improved method for solubilisation of wool keratin using peracetic acid, J. Environ. Chem. Eng. 5 (2017) 1977-1984.

C. Gruian, E. Vanea, S. Simon, V. Simon, FTIR and XPS studies of protein adsorption onto functionalized bioactive glass, Biochim. Biophys. Acta. 1824 (2012) 873–881.

K. L. Syres, A. G. Thomas, W. R. Flavell, B. F. Spencer, F. Bondino, M. Malvestuto,

A. Preobrajenski, M. Grätzel, Adsorbate-Induced Modification of Surface Electronic Structure: Pyrocatechol Adsorption on the Anatase TiO 2 (101) and Rutile TiO 2 (110) Surfaces, J. Phys. Chem. C. 116 (2012) 23515–23525.

I. N. Shabanova, I. V. Menshikov, N. S. Terebova, A. S. Terent’ev, Investigation of the interatomic interaction in immunoglobulin G fragments via X-ray photoelectron spectroscopy, J. Surf. Invest.: X-Ray, Synchrotron. 11 (2017) 823–826.

Y. K. Gao, F. Traeger, K. Kotsisb, V. Staemmler, A theoretical study of the XP and NEXAFS spectra of alanine: gas phase molecule, crystal, and adsorbate at the ZnO(1010) surface, Phys. Chem. Chem. Phys. 13 (2011) 10709-10718.