Effect of Thermal Conductivity of Carbon Superficial Layers on the Kinetics of Laser-Induced Incandescence

Main Article Content

Kateryna Zelenska
Serge Zelensky
Alexandr Kopyshinsky

Abstract

The effect of thermal conductivity on pulsed thermal emission, known as laser-induced incandescence (LII), of thin superficial layers of carbon samples with rough and polished surfaces was studied. LII was excited by irradiation of the carbon surfaces with nanosecond pulses of a YAG:Nd laser (1064 nm) with intensity of 3-40 MW/cm2. The results of the oscilloscope measurements of the LII pulse shape and calculation data demonstrated a significant reduction in the duration (FWHM) of the thermal emission pulse and its prolonged decay. The observed phenomenon was attributed to an increase in the thermal conductivity of the superficial layers of carbon samples.

Article Details

How to Cite
1.
Zelenska K, Zelensky S, Kopyshinsky A. Effect of Thermal Conductivity of Carbon Superficial Layers on the Kinetics of Laser-Induced Incandescence. Thai J. Nanosci. Nanotechnol. [internet]. 2017 Jun. 16 [cited 2025 Jan. 27];2(1):1-8. available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/40
Section
Research Articles

References

L.A. Melton, Soot diagnostics based on laser heating, Applied Optics 23 (1984) 22012208.

R.L. Vander Wal, Laser-induced incandescence: detection issues, Applied Optics 35 (33) (1996) 6548-6559.

B. Mewes and J.M. Seitzman, Soot volume fraction and particle size measurements with laser-induced incandescence, Applied Optics 36 (1997) 709-717.

R.L. Vander Wal, T.M. Ticich and A.B. Stephens, Can soot primary particle size be determined using laser-induced incandescence? Combustion and flame 116(1) (1999) 291-296.

S. Will, S. Schraml and A. Leipertz, Comprehensive Two-Dimensional Soot Diagnostics Based on Laser-Induced Incandescence (LII), Symposium (International) on Combustion 26 (1996) 2277-2284.

H.A. Michelsen, C. Schulz, G.J. Smallwood and S. Will, Laser-induced incandescence:

Particulate diagnostics for combustion, atmospheric, and industrial applications, Progress in Energy and Combustion Science 51 (2015) 2-48.

K. Mansour, M.J. Soileau and E.W. Van Stryland, Nonlinear optical properties of carbon-black suspensions (ink), Journal of the Optical Society of America B 9(7) (1992) 1100-1109.

R. Sommer and A. Leipertz, Application of laser-induced incandescence to suspended carbon black particles, Optics Letters 32(13) (2007) 1947-1949.

S. Zelensky, Laser-induced heat radiation of suspended particles: a method for temperature estimation, Journal of Optics A: Pure and Applied Optics 1 (1999) 454-458.

Ju.Ju. Rulik, N.M. Mikhailenko, S.E. Zelensky and A.S. Kolesnik, Laser-induced incandescence in aqueous carbon black suspensions: the role of particle vaporization, Semiconductor Physics, Quantum Electronics & Optoelectronics 10(2) (2007) 6-10.

S. Zelensky, A. Kolesnik, A. Kopyshinsky, V. Garashchenko, K. Zelenska, V. Stadnytsky and E. Shinkarenko, Thermal emission of carbon microparticles in polymer matrixes under pulsed laser excitation, Ukrainian Journal of Physics 54(10) (2009) 983-

K. Zelenska, S. Zelensky, L. Poperenko, K. Kanev, V. Mizeikis and V. Gnatyuk, Thermal mechanisms of laser marking in transparent polymers with light-absorbing microparticles, Optics & Laser Technology 76 (2016) 96-100.

S. Zelensky, Laser-induced heat radiation in borate glass, Journal of Physics: Condensed Matter 10 (1998) 7267-7272.

А.V. Kopyshinsky, Y.Р. Lazorenko and S.Е. Zelensky, Laser induced incandescence of borate glass doped with carbon microparticles, Functional materials 18(1) (2011) 116-

S. Zelensky, L. Poperenko, A. Kopyshinsky and K. Zelenska, Nonlinear characteristics of laser-induced incandescence of rough carbon surfaces, Nonlinear Optics and Applications VI, Proceedings of SPIE 8434 (2012) 84341H-1-6.

K. Zelenska, S. Zelensky, A. Kopyshinsky, S. Rozouvan and T. Aoki, Laser-induced incandescence of rough carbon surfaces, JJAP Conference Proceedings 4 (2015) 011106-1-6.

A.V. Kopyshinsky, S.E. Zelensky, E.A. Gomon, S.G. Rozouvan and A.S. Kolesnik, Laser-induced incandescence of silicon surface under 1064-nm excitation, Semiconductor Physics, Quantum Electronics & Optoelectronics 15(4) (2012) 376-381.

M.I. Rogaylin and E.F. Chalyh, Handbook of carbon materials, Chemistry, Leningrad, 1974.

H-J. Hagemann, W. Gudat and C. Kunz, Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2 O3 , Journal of the Optical Society of America 65(6) (1975) 742-744.

H.O. Pierson, Handbook of carbon, graphite, diamond and fullerenes: processing, properties and applications, Noyes Publications, Park Ridge, New Jersey, 1993.

J. Lee, J. Kim and T. Hyeon, Recent progress in the synthesis of porous carbon materials, Advanced Materials 18(16) (2006) 2073-2094.

D.W. Wang, F. Li, M. Liu, G.Q. Lu and H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angewandte Chemie International Edition 47(2) (2008) 373-376.