Rapid Microwave-Assisted Synthesis of Nickel Oxide/Multi-walled Carbon Nanotube Composites

Main Article Content

Prasopporn Junlabhut
Chatpong Bangbai
Chokchai Kahattha

Abstract

In this paper, nickel oxide/multi-walled carbon nanotube (NiO/MWCNTs) composites were synthesized by a rapid and simple microwave-assisted method using nickel chloride hexahydrate and UV-treated multi-walled carbon nanotube as a starting precursor. Assynthesized hybrid composite materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). XRD results indicated that the composites are in form of mixture of two phases of cubic NiO and MWCNTs. SEM and TEM results showed that NiO nanoparticles with average size less than 10 nm were well-decorated on the surface of MWCNTs and the amount of NiO particles increases with increasing irradiation power.

Article Details

How to Cite
1.
Junlabhut P, Bangbai C, Kahattha C. Rapid Microwave-Assisted Synthesis of Nickel Oxide/Multi-walled Carbon Nanotube Composites. Thai J. Nanosci. Nanotechnol. [Internet]. 2016 Dec. 30 [cited 2024 Nov. 24];1(2):17-22. Available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/39
Section
Research Articles

References

L. Hyoung-Sub, O. Je-Seung, C. Young-Wook, P. Yoon-Jung, S. Jeon-Soo and Y. Kyung-Hwa, Current Applied Physics 9 (2009) e270-e272.

J.M. Ko and K.M. Kim, Materials Chemistry and Physics 114 (2009) 837-841.

S. Srividya, S. Gautam, P. Jha, P. Kumar, A. Kumar, U.S. Ojha, J.S.B.S. Rawat, S. Pal, P.K. Chaudhary, Harsh and R.K. Sinha, Applied Surface Science 256 (2010) 35633566.

K. Iyakutti, Y. Kawazoe, M. Rajarajeswari and V.J. Surya, International Journal of Hydrogen Energy 34 (2009) 370-375.

A. Arvinte, A.C. Westermann, A.M. Sesay and V. Virtanen, Sensor and Actuators B:

Chemical 150 (2010) 756-763.

B. Gao, C. Peng, G.Z. Chen and G.L. Puma, Applied Catalysis B: Environmental 85 (2008) 17-23.

N.M. Deraz, M.M. Selim and M.R. Amadan, Materials Chemistry and Physics 113 (2009) 269-275.

F. Li, H.Y. Chen, C.M. Wang and K.A Hu, Journal of Electroanalytical Chemistry 531 (2002) 53-60.

X.H. Huang, J.P. Tu, X.H. Xia, X.L. Wang, J.Y. Xiang, L. Zhang and Y. Zhou, Journal of Power Sources 118 (2009) 588-591.

M. Tadić, M. Panjan and D. Marković, Materials Letters 64 (2010) 2129-2131.

J.Y. Lee, K. Liang, K.H. An and Y.H. Lee, Synthetic Metals 150 (2005) 153-157.

C. Xu, J. Sun and L. Gao, Journal of Power Sources 196 (2011) 5138-5142.

K.L. Yu, J.J. Zou, Y.H. Ben, Y.P. Zhang and C.J. Liu, Diamond and Related Materials 15 (2006) 1217-1222.

K.D. Bhatte, P. Tambade, S.I. Fujita, M. Arai and B.M. Bhanage, Powder Technology 203 (2010) 415-418.

Z. Zhu, N. Wei, H. Liu and Z. He, Advanced Powder Technology 22 (2011) 422-426.

O. Palchik, S. Avivi, D. Pinkert and A. Gedanken, NanoStructured Materials 11 (1999) 415–420.

P. Singjai, S. Changsarn and S. Thongtem, Materials Science and Engineering: A 443 (2007) 42–46.

W. Xing, F. Li, Z.F. Yan and G.Q. Lu, Journal of Power Sources 134 (2004) 324-330.

S. Z. Khan, Y. Yuan, A. Abdolv, M. Schmidt, P. Crouse, L. Li, Z. Liu, M. Sharp and K.G. Watkins, Journal of Nanoparticle Research (2008) 1-7.

L. Yu, G. Wang, G. Wan, G. Wang, S. Lin, X. Li, K. Wang, Z. Baic and Y. Xiangc. J.

Name (2012) 1-9.

E. Najafi, J-Y. Kim, S-H. Han and K. Shin, Colloids and Surfaces A: Physicochemical and Engineering Aspects 284-5 (2006) 373-378.

B. Gao, C. Yuan, L. Su, S. Chen and X. Zhang, Electrochimica Acta 54 (2009) 35613567.

Y. Wang, J. Zhu, X. Yang, L. Lu and X. Wang, Thermochimica Acta 437 (2005) 106-109.