The Influence of Glycerol on Preparing Tapioca/TiO2 Bionanocomposite Films

Main Article Content

Woradech Meedech
Natchayaporn Sakulpeeb
Sutee Chutipaijit
Wantana Koetniyom
Supamas Wirunchit

Abstract

This study focuses on the preparation of bionanocomposite films incorporating TiO2 nanoparticles synthesized through a green chemistry approach using extracts from sweet orange (Citrus sinensis) peels. Tapioca starch was used as the biopolymer matrix, while TiO2 nanoparticles served as the dispersed phase. The films were fabricated with varying glycerol-to-starch ratios (25%, 50%, 75%, and 100%) to determine the optimal formulation. Among these, the film containing 75% glycerol exhibited the most desirable mechanical and physical properties. The obtained films were subsequently characterized for their physical properties, water wettability via contact angle measurements, antibacterial activity using the disc diffusion method against Staphylococcus aureus and Escherichia coli, and biodegradability under sunlight exposure.

Article Details

How to Cite
1.
Meedech W, Sakulpeeb N, Chutipaijit S, Koetniyom W, Wirunchit S. The Influence of Glycerol on Preparing Tapioca/TiO2 Bionanocomposite Films. Thai J. Nanosci. Nanotechnol. [internet]. 2025 Dec. 31 [cited 2026 Jan. 12];10(2):24-33. available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/250
Section
Research Articles

References

Pollution Control Department. (2020). Plastic waste situation in Thailand 2020. Ministry of Natural Resources and Environment, Thailand.

Viriya, H., Saengchut, P., & Kongritti, N. (2024). Forecasting of plastic packaging waste in Thailand using economic index data application. Science, Engineering and Health Studies, 18, Article 24020007. DOI: 10.69598/sehs.18.24020007.

Asawachet, N., & Samerwong, P. (2024). Exploring Extended Producer Responsibility in Thailand: Progress and opportunities for alternative waste management policy. In Proceedings of the 5th Environment and Natural Resources International Conference (ENRIC 2024). Faculty of Environment and Resource Studies, Mahidol University.

Trevisan, R. O., Oliveira, J. M., Perini, H. F., Travaglini, U., Rezende, T. K. de L., Santos, F. R. D., Floresta, L. R. de S., Borges, A. L., Ruiz, L. C., Silva, L. E. de A., Marinho, J. Z., Fonseca, F. M., Oliveira, C. J. de, Júnior, V. R., Silva, M. V. da, Anhezini, L., & Silva, A. C. A. (2024). Enhanced antibacterial efficacy of biocompatible Ag-doped ZnO/AgO/TiO₂ nanocomposites against multiresistant bacteria. Next Materials, 7, 100447. DOI: 10.1016/j.nxmate.2024.100447.

Suryanegara, L. (2021). Novel antimicrobial bioplastic based on PLA-chitosan by incorporation of chitosan–ZnO: A study of mechanical, thermal and antibacterial properties. Materials, 14(20), 6065. DOI: 10.3390/ma14206065.

Serov, D. A., Gritsaeva, A. V., Yanbaev, F. M., Simakin, A. V., & Gudkov, S. V. (2024). Review of antimicrobial properties of titanium dioxide nanoparticles. International Journal of Molecular Sciences, 25(19), 10519. DOI: 10.3390/ijms251910519.

Alfa Chemistry. What are the applications of titanium dioxide nanomaterials? [Internet]. Labinsights; 2024 [cited 2025 Dec 29]. Available from: https://labinsights.nl/en/article/ what-arethe-applications-of-titanium-dioxide-nanomaterials.

Mo, S., & Ching, W. Y. (1995). Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 51(21), 13023–13032. DOI: 10.1103/PhysRevB.51.13023.

Kandiel, T. A., Robben, L., Alkaim, A., & Bahnemann, D. (2013). Brookite versus anatase TiO2 photocatalysts: Phase transformations and photocatalytic activities. Photochemical & Photobiological Sciences, 12(4), 602–609. DOI: 10.1039/C2PP25217A.

Goudarzi, V., & Shahabi-Ghahfarrokhi, I. (2018). Development of photo-modified starch/kefiran/ TiO₂ bio-nanocomposite as an environmentally-friendly food packaging material. International Journal of Biological Macromolecules, 116, 1082–1088. DOI: 10.1016/j.ijbiomac. 2018.05.138.

Kaewklin, P., Siripatrawan, U., Suwanagul, A., & Lee, Y. S. (2018). Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. International Journal of Biological Macromolecules, 112, 523–529. DOI: 10.1016/j.ijbiomac. 2018.01.124.

Kazemi, S., Hosseingholian, A., Gohari, S., Feirahi, F., Moammeri, F., Mesbahian, G., Moghaddam, Z., & Ren, Q. (2023). Recent advances in green synthesized nanoparticles: From production to application. Materials Today Sustainability, 24, 100500. DOI: 10.1016/j.mtsust. 2023.100500.

Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 16, 84. DOI: 10.1186/s12951-018-0408-4.

Srivastava, K., & Prasad, S. (2024). Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environmental Chemistry Letters, 22, 841–887. DOI: 10.1007/s10311-023-01682-3.

Olana, M. H., Sabir, F. K., Bekele, E. T., & Gonfa, B. A. (2022). Citrus sinensis and Musa acuminata peel waste extract mediated synthesis of TiO₂/rGO nanocomposites for photocatalytic degradation of methylene blue under visible light irradiation. Bioinorganic Chemistry and Applications, 2022, 5978707. DOI: 10.1155/2022/5978707.

Wu, H. J., Kato, K., Honda, K., Nakao, S., & Sugiyama, T. (2019). Photo-induced superhydrophilic thin films on quartz by UV irradiation of TiO2 . Materials, 12(3), 348. DOI: 10.3390/ ma12030348.

Vuković, T., Živković, S., & Filipović, I. (2023). Systematic study of wettability alteration of glass surfaces by UV/ozone and its relation to surface morphology and porosity. ACS Omega, 8, 20232029. DOI: 10.1021/acsomega.3c02448.

Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: Review. SpringerPlus, 2, 398. DOI: 10.1186/2193-1801-2-398.

Du, B., Lee, C., & Ji, Y. (2024). Study of factors affecting UV-induced photo-degradation in different types of polyethylene sheets. Polymers, 16(19), 2709. DOI: 10.3390/polym16192709.

Serov, D. A., Gritsaeva, A. V., Yanbaev, F. M., Simakin, A. V., & Gudkov, S. V. (2024). Review of antimicrobial properties of titanium dioxide nanoparticles. International Journal of Molecular Sciences, 25(19), 10519. DOI: 10.3390/ijms251910519.

Ikram, M., Hassan, J., Raza, A., Haider, A., Naz, S., Ul-Hamid, A., Haider, J., Shahzadi, I., Qumar, U., & Ali, S. (2020). Photocatalytic and bactericidal properties and molecular docking analysis of TiO₂ nanoparticles conjugated with Zr for environmental remediation. RSC Advances, 10(50), 30007–30024. DOI: 10.1039/d0ra05862a.

Zhao, Y., Yao, G., Li, K., Ye, J., Chen, J., & Zhang, J. (2025). Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films. Food Chemistry: X, 25, 102057. DOI: 10.1016/j.fochx.2024.102057.