Nanosized Natural Minerals as Sustainable Fillers for Near-Infrared Shielding Coatings: Comparative Study of Rutile, Leucoxene, Ilmenite, and Hydroilmenite

Main Article Content

Akepawit Thanachokchaiwat
Thanaphon Kansaard
Maneerat Songpanit
Weerachon Phoohinkong

Abstract

This study investigates nanosized Thai natural minerals rutile, leucoxene, ilmenite, and hydroilmenite as sustainable fillers for near-infrared (NIR) shielding coatings. The minerals, mainly composed of TiO₂, were processed by high-energy ball milling without chemical additives. The resulting natural mineral nanopowders were subsequently dispersed into a polyvinyl alcohol (PVA) matrix and applied as thin film coatings. and incorporated into polyvinyl alcohol (PVA) coatings. The optical and thermal performance was found to be highly dependent on the resulting particle size and elemental composition. Specifically, the TiO₂-rich rutile and leucoxene coatings primarily enhanced IR reflection, whereas the iron-rich of ilmenite and hydroilmenite coatings significantly improved NIR absorption. Critically, the ilmenite coating achieved optimal thermal performance, resulting in a maximum reduction of the model house interior temperature by 3 °C compared to the unmodified PVA film. These findings confirm the feasibility of utilizing locally sourced, processed natural minerals as cost-effective and environmentally friendly alternatives to synthetic nanomaterials, demonstrating a promising pathway for developing high-performance, energy-saving coatings.

Article Details

How to Cite
1.
Thanachokchaiwat A, Kansaard T, Songpanit M, Phoohinkong W. Nanosized Natural Minerals as Sustainable Fillers for Near-Infrared Shielding Coatings: Comparative Study of Rutile, Leucoxene, Ilmenite, and Hydroilmenite. Thai J. Nanosci. Nanotechnol. [internet]. 2025 Dec. 31 [cited 2026 Jan. 12];10(2):34-49. available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/247
Section
Research Articles

References

Roy, A., Ghosh, A., Mallick, T. K., Tahir, A. A., & Sundaram, S. (2022). Smart glazing thermal comfort improvement through near-infrared shielding paraffin incorporated SnO₂-Al₂O₃ composite. Construction and Building Materials, 331, 127319. DOI: 10.1016/j.conbuildmat.2022.127319.

Soranakom, M. P. (2021). Development of Fe₂O₃@SiO₂ and Fe₂O₃@ZrSiO₄ core-shell NIRreflective red pigments [Master's thesis]. King Mongkut's Institute of Technology Ladkrabang.

Ng, Z. Q. C., Manzhos, S., & Sonar, P. (2020). Energy-efficient stacks—Covellite (CuS) on polyethylene terephthalate film: A sustainable solution to heat management. The Journal of Physical Chemistry C, 124(5), 3314–3321. DOI: 10.1021/acs.jpcc.9b11099.

Früh, A., Suseendran, D., Elmas, S., & Heitz, T. (2022). Orientation analysis of polymer thin films on metal surfaces via IR absorbance of the relative transition dipole moments. Applied Surface Science, 594, 153476. DOI: 10.1016/j.apsusc.2022.153476.

Liu, Q., Hao, B., Zhang, L., Wang, Y., & Zhao, Y. (2021). Ultrathin, biomimetic multifunctional leaf-like silver nanowires/Ti₃C₂Tₓ MXene/cellulose nanofibrils nanocomposite film for high-performance electromagnetic interference shielding and thermal management. Journal of Alloys and Compounds, 860, 158151. DOI: 10.1016/j.jallcom.2020.158151.

Nematpour, A., Shishkin, I. I., Aliev, K. B., & Sreejith, S. (2021). Experimental mid-infrared absorption (84%) of single-layer graphene in a reflective asymmetric Fabry–Perot filter: Implications for photodetectors. ACS Applied Nano Materials, 4(2), 1495–1502. DOI: 10.1021/acsanm.0c03036.

Wang, Y., Zhang, X., Li, J., & Zhang, Y. (2025). Recent advances in graphene-based materials for radar and infrared stealth application. Composites Part A: Applied Science and Manufacturing, 192, 108807. DOI: 10.1016/j.compositesa.2024.108807.

Gao, C., Li, S., Wang, J., & Zhang, H. (2024). Low infrared emissivity and corrosion resistance of TiO₂ films prepared by thermal oxidation of sputtered Ti films. Materials Today Communications, 41, 111100. DOI: 10.1016/j.mtcomm.2024.111100.

Hazra, S., Mallick, T. K., & Sundaram, S. (2024). Cost-efficient Ag/Ag-TiO₂ coating-based flexible transparent heat reflector for energy-saving smart windows. ACS Applied Energy Materials, 7(17), 7316–7324. DOI: 10.1021/acsaem.4c01016.

Singh, S., Maurya, I. C., Senapati, S., Srivastava, P., & Bahadur, L. (2017). Fabrication of highly efficient TiO₂/Ag/TiO₂ multilayer transparent conducting electrode with N ion implantation for optoelectronic applications. Ceramics International, 43(13), 9759–9768. DOI:

1016/j.ceramint.2017.04.144.

Dalapati, G. K., Sharma, H., Guchhait, A., & Chakraborty, S. (2016). Color tunable low cost transparent heat reflector using copper and titanium oxide for energy saving application. Scientific Reports, 6(1), 20182. DOI: 10.1038/srep20182.

Wang, D., Wu, X., & Gao, Q. (2021). Novel energy-saving window coating based on F doped TiO₂ nanocrystals with enhanced NIR shielding performance. Ceramics International, 47(20), 2855728565. DOI: 10.1016/j.ceramint.2021.07.015.

Gao, Q., Wu, X., & Zhou, C. (2025). Enhancing the NIR blockage efficiency of heavily doped TiO₂ via local surface plasmon resonance modulation for energy-saving window. Journal of Alloys and Compounds, 1010, 177567. DOI: 10.1016/j.jallcom.2024.177567.

Lee, H. J., Jung, K. Y., & Kim, Y. S. (2021). Nanostructured Fe₂O₃/TiO₂ composite particles with enhanced NIR reflectance for application to LiDAR detectable cool pigments. RSC Advances, 11(28), 16834–16840. DOI: 10.1039/D1RA02244G.

Hwang, J. S., & Jung, K. Y. (2026). Enhanced near-infrared reflectance of TiO₂/(Fe,Mn)₂O₃ composite black pigments synthesized by spray pyrolysis. Ceramics International, 52(1), 10411049. DOI: 10.1016/j.ceramint.2025.10.045.

Sadeghi-Niaraki, S., Jafari, H., & Kiani, M. S. (2020). Cool and photocatalytic reddish-brown nanostructured Fe₂O₃@SiO₂@TiO₂ pigments. Materials Science and Engineering: B, 262, 114752. DOI: 10.1016/j.mseb.2020.114752.

Tahooni Bonab, S., Abdollahi, H., & Abbaspour, A. (2025). The hydrometallurgical approach in the production of a high content of titanium dioxide (TiO₂) from ilmenite, direct hydrochloric and sulfuric acid leaching and pre-treatment methods: A review. Mineral Processing and Extractive Metallurgy Review, 46(4), 537–553. DOI: 10.1080/08827508.2023.2281541.

Sampath, A. H. J., Premaratne, K., & Rathnayaka, S. (2023). Methods of extracting TiO₂ and other related compounds from ilmenite. Minerals, 13(5), 662. DOI: 10.3390/min13050662.

Noman, M. T., Ashraf, M. A., & Ali, A. (2019). Synthesis and applications of nano-TiO₂: A review. Environmental Science and Pollution Research, 26(4), 3262–3291. DOI: 10.1007/s11356-0183884-y.

Fauzi, A., Santosa, S. J., & Siswanta, D. (2024). Exploring heterogenous TiO₂ nanocrystals from natural ilmenite mineral extraction for energy application. Materials Science for Energy Technologies, 7, 216–227. DOI: 10.1016/j.mset.2024.01.002.

Phoohinkong, W., Sirivipa, S., & Prommalikit, M. C. (2017). Electrochemical properties of nanopowders derived from ilmenite and leucoxene natural minerals. Ceramics International, 43, S717–S722. DOI: 10.1016/j.ceramint.2017.02.045.

Phoohinkong, W., Sirivipa, S., & Prommalikit, M. C. (2018). Synthesis of low-cost titanium dioxide-based heterojunction nanocomposite from natural ilmenite and leucoxene for electrochemical energy storage application. Current Applied Physics, 18, S44–S54. DOI: 10.1016/j.cap.2017.11.006.

Wei, Y., Wang, X., & Zhang, L. (2025). Polymers with tunable rigidity enable thermal stiffening peptide hydrogels and ultra-tough polyvinyl alcohol membranes. Small, 21(45), e08045. DOI: 10.1002/smll.202408045.

Jinsi, C. P., Sreeraj, K. P., & Jose, G. (2025). Transparent heat reflecting PVA/Cu/PVA photonic structures for energy saving smart windows. Materials Chemistry and Physics, 336, 130545. DOI: 10.1016/j.matchemphys.2024.130545.

Li, Y., Pu, J., & Lu, L. (2025). A quantitative analysis for radiative cooling of a novel window composed of nanoparticles film in hot seasonal region. Applied Thermal Engineering, 279, 127946. DOI: 10.1016/j.applthermaleng.2024.127946.

Devine, R. A. (2012). The physics and technology of amorphous SiO₂. Springer Science & Business Media.

Meinhold, G. (2010). Rutile and its applications in earth sciences. Earth-Science Reviews, 102(1), 1–28. DOI: 10.1016/j.earscirev.2010.06.001.

Prommalikit, M. C. (2018). Size reduction of ZnO powder by high energy mechanical milling process [Master's thesis]. King Mongkut's Institute of Technology Ladkrabang.

Almquist, C. B., & Biswas, P. (2002). Role of synthesis method and particle size of nanostructured TiO₂ on its photoactivity. Journal of Catalysis, 212(2), 145–156. DOI: 10.1006/jcat.2002.3783.

Phoohinkong, W., Sirivipa, S., & Prommalikit, M. C. (2017). Characterization and x-ray absorption spectroscopy of ilmenite nanoparticles derived from natural ilmenite ore via acid-assisted mechanical ball-milling process. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(3), 035012. DOI: 10.1088/2043-6254/aa78b8.

Pronpugdewatana, M. A. (2018). Preparation of new photocatalyst from magnetic leucoxene minerals via high-energy ball milling method [Master's thesis]. King Mongkut's Institute of Technology Ladkrabang.

Baláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J. M., Delogu, F., Dutková, E., Gaffet, E., Gotor, F. J., Kumar, R., Mitov, I., Rojac, T., Senna, M., Streletskii, A., & Wieczorek-Ciurowa, K. (2013). Hallmarks of mechanochemistry: From nanoparticles to technology. Chemical Society Reviews, 42(18), 7571–7637. DOI: 10.1039/C3CS35031K.

Sepelak, V., Begin-Colin, S., & Caër, G. (2012). Transformations in oxides induced by high-energy ball-milling. Dalton Transactions, 41, 11927–11948. DOI: 10.1039/C2DT31403F.

Rawat, M., & Singh, R. N. (2022). A study on the comparative review of cool roof thermal performance in various regions. Energy and Built Environment, 3(3), 327–347. DOI: 10.1016/j.enbenv.2021.03.001.

Rosado, P. J., Levinson, R., & Akbari, H. (2014). Measured temperature reductions and energy savings from a cool tile roof on a central California home. Energy and Buildings, 80, 57–71. DOI: 10.1016/j.enbuild.2014.05.011.

Kim, H. J., Kim, S. H., & Kim, J. H. (2020). Shape control of rutile TiO₂ particles templated using graft copolymers for thermo-shielding materials. Ceramics International, 46(1), 1227–1231. DOI: 10.1016/j.ceramint.2019.09.081.

Xia, Z., Wang, Y., & Chen, X. (2025). Passive radiative cooling films doped with SiO₂-TiO₂ of different particle sizes with excellent solar reflectivity and high infrared emissivity. Solar Energy Materials and Solar Cells, 292, 113812. DOI: 10.1016/j.solmat.2024.113812.

Wong, A., Daoud, W. A., & Liang, H. (2015). Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric. Solar Energy Materials and Solar Cells, 134, 425–437. DOI: 10.1016/j.solmat.2014.12.025.

Mishra, B. R., Sundaram, S., & Sasihithlu, K. (2024). Cooling performance of TiO₂-based radiative cooling coating in tropical conditions. ACS Omega, 9(50), 49494–49502. DOI: 10.1021/acsomega.4c06208.

Jalava, J. P., Paronen, M. P., & Sun, Z. (2015). Modeling TiO₂’s refractive index function from bulk to nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 167, 105–118. DOI: 10.1016/j.jqsrt.2015.08.010.

McNeil, L. E., & French, R. H. (2000). Multiple scattering from rutile TiO₂ particles. Acta Materialia, 48(18), 4571–4576. DOI: 10.1016/S1359-6454(00)00243-3.