Value-Added of Sweet Orange Peel Waste into TiO2 Nanoparticles via Green Synthesis for Antibacterial Applications
Main Article Content
Abstract
This research focuses on the TiO2 nanoparticles synthesized via a green chemistry approach using extracts from sweet orange, (Citrus sinensis) peels. The quality of the synthesized titanium dioxide nanoparticles was enhanced through an annealing process at 350°C for 6 hours. It was found that this thermal treatment significantly improved the particle quality. The antibacterial activity of the nanoparticles was investigated at concentrations of 0.1, 0.3, and 0.5 mg/mL in deionized water using the disc diffusion technique against both Gram-positive and Gram-negative bacteria. Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were used as representative strains for Gram-positive and Gram-negative bacteria, respectively. The results indicated that the TiO2 at a concentration of 0.5 mg/mL exhibited the most effective antibacterial performance against both types of bacteria.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Chataut, G., Bhatta, B., Joshi, D., Subedi, K., & Kafle, K. (2023). Greenhouse gas emissions from agricultural soil: A review. Journal of Agriculture and Food Research, 11, 100533. DOI: 10.1016/j.jafr.2023.100533.
Rifna, E. J., Misra, N. N., & Dwivedi, M. (2023). Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Critical reviews in food science and nutrition, 63(6), 719–752. DOI: 10.1080/10408398.2021.1952923.
Kučuk, N., Primožič, M., Kotnik, P., Knez, Ž., & Leitgeb, M. (2024). Mango Peels as an Industrial By-Product: A Sustainable Source of Compounds with Antioxidant, Enzymatic, and Antimicrobial Activity. Foods, 13(4), 553. DOI: 10.3390/foods13040553.
Favela-Hernández, J. M. J., González-Santiago, O., Ramírez-Cabrera, M. A., Esquivel-Ferriño, P.C., & Camacho-Corona, M. D. R. (2016). Chemistry and Pharmacology of Citrus sinensis. Molecules, 21(2), 247. DOI: 10.3390/molecules21020247.
Deka, D., & Talukdar, A. D. (2019). Citrus sinensis (L.) Osbeck: A review on its nutritional and pharmacological aspects. Chiang Mai University Journal of Natural Sciences, 18(3), 256–264. https://cmuj.cmu.ac.th/nlsc/journal/article/965.
Cavalu, S., Rusu, G., & Popa, A. (2013). FTIR and Raman Characterization of TiO 2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Journal of Spectroscopy, 2013, 948197. DOI: 10.1155/2013/948197.
Maurya, I. C., Singh, S., Senapati, S., Srivastava, P., & Bahadur, L. (2019). Green synthesis of TiO2 nanoparticles using Bixa orellana seed extract and its application for solar cells. Solar Energy, 194, 952-958. DOI: 10.1016/j.solener.2019.10.090.
Isnaeni, I. N., Indriyati, Dedi, Sumiarsa, D., & Primadona, I. (2021). Green synthesis of different TiO 2 nanoparticle phases using mango-peel extract. Materials Letters, 294, 129792. DOI: 10.1016/j.matlet.2021.129792.
Kushwaha, R., Chauhan, R., Srivastava, P., & Bahadur, L. (2015). Synthesis and characterization of nitrogen-doped TiO 2 samples and their application as thin film electrodes in dye-sensitized solar cells. Journal of Solid State Electrochemistry, 19(2), 507-517. DOI: 10.1007/s10008-014-2623-8.
Cullity, B. D., & Stock, S. R. (2001). Elements of X-ray diffraction (3rd ed.). Prentice Hall.
Serov, D. A., Gritsaeva, A. V., Yanbaev, F. M., Simakin, A. V., & Gudkov, S. V. (2024). Review of Antimicrobial Properties of Titanium Dioxide Nanoparticles. International Journal of Molecular Sciences, 25(19), 10519. DOI: 10.3390/ijms251910519.
Ikram, D. M., Hassan, J., Raza, A., Haider, A., Naz, S., Ul-Hamid, A., Haider, J., Shahzadi, I., Qumar, U., & Ali, S. (2020). Photocatalytic and bactericidal properties and molecular docking analysis of TiO 2 nanoparticles conjugated with Zr for environmental remediation. RSC Advances, 10(50), 30007–30024. DOI: 10.1039/D0RA05735B.