Smart Tannin Nanoparticles: A Novel Approach to Overcome Rumen Anti-Nutritional Barriers in Ruminant Nutrition

Main Article Content

Rezki Amalyadi

Abstract

Ruminant livestock production in semi-arid regions faces persistent challenges, including seasonal feed shortages, variable nutrient quality, and environmental issues such as methane emissions. These constraints impact animal productivity, health, and sustainability. Tannins, a group of plant-derived polyphenols, have garnered attention for their potential to improve protein utilization and reduce enteric methane emissions. However, at high concentrations, tannins exert anti-nutritional effects—reducing feed intake, nutrient digestibility, and altering rumen microbial balance—thus limiting their practical utility in ruminant diets. Recent advancements in nanotechnology offer an innovative strategy to address these limitations through the formulation of tannin nanoparticles. These smart delivery systems enhance the bioavailability, stability, and targeted release of tannins in the gastrointestinal tract, enabling controlled interactions with rumen microbes and dietary macromolecules. This review explores the current state of knowledge regarding the dualistic role of tannins, the principles and safety of nanotechnology in animal feed, and the comparative impacts of conventional tannins and nano-tannin applications on rumen fermentation, methane mitigation, nutrient metabolism, and animal performance. While tannin nanoparticles show promise in improving ruminant nutrition and environmental sustainability, several research gaps remain. These include the need for standardized nanoparticle formulations, comprehensive long-term safety evaluations, and clear regulatory frameworks for their use in livestock systems. Addressing these challenges is crucial for enabling the responsible and effective integration of nanotechnology into future ruminant feeding strategies, particularly in resource-limited and climate-vulnerable regions.

Article Details

How to Cite
1.
Amalyadi R. Smart Tannin Nanoparticles: A Novel Approach to Overcome Rumen Anti-Nutritional Barriers in Ruminant Nutrition. Thai J. Nanosci. Nanotechnol. [internet]. 2025 Dec. 31 [cited 2026 Jan. 12];10(2):1-14. available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/225
Section
Review article

References

Abdelnour, S. A., Alagawany, M., Hashem, N. M., Farag, M. R., Alghamdi, E. S., Ul Hassan, F., Bila, R. M., Elnesr, S. S., Dawood, M. A. O., Nagadi, S. A., Elwan, H. A. M., Almasoudi, A. G., & Attia, Y. A. (2021). Nanominerals: Fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. In Animals (Vol. 11, Issue 7). https://doi.org/10.3390/ani11071916

Adejoro, F. A., Hassen, A., & Akanmu, A. M. (2019). Effect of lipid-encapsulated acacia tannin extract on feed intake, nutrient digestibility and methane emission in sheep. Animals, 9(11), 863.

Aguerre, M. J., Capozzolo, M. C., Lencioni, P., Cabral, C., & Wattiaux, M. A. (2016). Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation, and nitrogen partitioning in dairy cows. Journal of Dairy Science, 99(6), 4476–4486.

AL-Hamdany, E. K., & Y Al-hbiti, T. (2020). Nanonephrology in Veterinary Medicine: A Branch of Nanomedicine for Renal Diseases in Animals. Journal of Applied Veterinary Sciences, 5(4), 17–24.

Alagawany, M., Abdelnour, S. A., Farag, M. R., Elnesr, S. S., & El Kholy, M. S. (2020). Nutritional Applications of Nanotechnology in Poultry with Special References to Minerals. In Natural Feed Additives Used in the Poultry Industry (pp. 262–284). Bentham Science Publishers.

Almeida, C. F., Faria, M., Carvalho, J., & Pinho, E. (2024). Contribution of nanotechnology to greater efficiency in animal nutrition and production. Journal of Animal Physiology and Animal Nutrition, 108(5), 1430–1452.

Amenta, V., Aschberger, K., Arena, M., Bouwmeester, H., Moniz, F. B., Brandhoff, P., Gottardo, S., Marvin, H. J. P., Mech, A., & Pesudo, L. Q. (2015). Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology, 73(1), 463–476.

Antonik, I., Danchuk, O., & Sadullaev, S. (2025). Global environmental challenges in livestock Farming: Solutions and sustainable development. BIO Web of Conferences, 151, 2012.

Aquilani, C., Confessore, A., Bozzi, R., Sirtori, F., & Pugliese, C. (2022). Precision Livestock Farming technologies in pasture-based livestock systems. Animal, 16(1), 100429.

Atacan, K., Çakıroğlu, B., & Özacar, M. (2017). Efficient protein digestion using immobilized trypsin onto tannin modified Fe3O4 magnetic nanoparticles. Colloids and Surfaces B: Biointerfaces, 156, 9–18.

Baaske, L., Gäbel, G., & Dengler, F. (2020). Ruminal epithelium: A checkpoint for cattle health. Journal of Dairy Research, 87(3), 322–329.

Bagno, O. A., Prokhorov, O. N., Shevchenko, S. A., Shevchenko, A. I., & Dyadichkina, T. V. (2018). Use of phytobioticts in farm animal feeding. Agricultural Biology, 53(4), 687–697.

Bernabucci, G., Evangelista, C., Girotti, P., Viola, P., Spina, R., Ronchi, B., Bernabucci, U., Basiricò, L., Turini, L., & Mantino, A. (2025). Precision livestock farming: an overview on the application in extensive systems. Italian Journal of Animal Science, 24(1), 859–884.

Besharati, M., Maggiolino, A., Palangi, V., Kaya, A., Jabbar, M., Eseceli, H., De Palo, P., & Lorenzo, J. M. (2022). Tannin in ruminant nutrition. Molecules, 27(23), 8273.

Bhat, T. K., Kannan, A., Singh, B., & Sharma, O. P. (2013). Value addition of feed and fodder by alleviating the antinutritional effects of tannins. Agricultural Research, 2, 189–206.

Biswas, I., Mitra, D., Das, S., Sarkar, D., & Mohapatra, P. K. Das. (2024). Enhanced antibacterial effect of natural tannin stabilized silver nano particles against human pathogens: A target toward FtsZ proteins. Journal of Trace Elements and Minerals, 10, 100200.

Cabrera-Barjas, G., Butto-Miranda, N., Nesic, A., Moncada-Basualto, M., Segura, R., Bravo-Arrepol, G., Escobar-Avello, D., Moeini, A., Riquelme, S., & Neira-Carrillo, A. (2024). Condensed tannins from Pinus radiata bark: Extraction and their nanoparticles preparation in water by green method. International Journal of Biological Macromolecules, 278, 134598.

Candinegara, T. (2020). Challenges of using feed additives in Indonesia. IOP Conference Series: Earth and Environmental Science, 492(1), 12001.

Chau, C.-F., Wu, S.-H., & Yen, G.-C. (2007). The development of regulations for food nanotechnology. Trends in Food Science & Technology, 18(5), 269–280.

Committee, E. S., Hardy, A., Benford, D., Halldorsson, T., Jeger, M. J., Knutsen, H. K., More, S., Naegeli, H., Noteborn, H., & Ockleford, C. (2018). Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA Journal, 16(7), e05327.

Committee, E. S., More, S., Bampidis, V., Benford, D., Bragard, C., Halldorsson, T., Hernández‐Jerez, A., Hougaard Bennekou, S., Koutsoumanis, K., & Lambré, C. (2021). Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: Human and animal health. Efsa Journal, 19(8), e06768.

Costa, J. R., Xavier, M., Amado, I. R., Gonçalves, C., Castro, P. M., Tonon, R. V, Cabral, L. M. C., Pastrana, L., & Pintado, M. E. (2021). Polymeric nanoparticles as oral delivery systems for a grape pomace extract towards the improvement of biological activities. Materials Science and Engineering: C, 119, 111551.

Costantini, D., Rowe, M., Butler, M. W., & McGraw, K. J. (2010). From molecules to living systems: historical and contemporary issues in oxidative stress and antioxidant ecology. Functional Ecology, 24(5), 950–959.

Davis, T. C., & White, R. R. (2020). Breeding animals to feed people: The many roles of animal reproduction in ensuring global food security. Theriogenology, 150, 27–33.

Debrincat, S., Taggart, D., Rich, B., Beveridge, I., Boardman, W., & Dibben, R. (2014). Effects of overnight captivity on antioxidant capacity and clinical chemistry of wild southern hairy-nosed wombats (Lasiorhinus latifrons). Journal of Zoo and Wildlife Medicine, 45(3), 469–475.

Decandia, M., Cabiddu, A., & Molle, G. (2011). Effect of tannins on the nutrition, grazing or browsing management and enviornmental impact of small ruminants fed mediterranean pastures. Tannins: Types, Food Containing, and Nutrition. Nova Science, Inc., New York, 83–112.

Di Bona, K. R., Xu, Y., Ramirez, P. A., DeLaine, J., Parker, C., Bao, Y., & Rasco, J. F. (2014). Surface charge and dosage dependent potential developmental toxicity and biodistribution of iron oxide nanoparticles in pregnant CD-1 mice. Reproductive Toxicology, 50, 36–42.

Douglas, S. L., Szyszka, O., Stoddart, K., Edwards, S. A., & Kyriazakis, I. (2015). Animal and management factors influencing grower and finisher pig performance and efficiency in European systems: a meta-analysis. Animal, 9(7), 1210–1220.

El-Sayed, A., & Kamel, M. (2020). Advanced applications of nanotechnology in veterinary medicine. Environmental Science and Pollution Research, 27, 19073–19086.

Espinoza-Velasco, B., & Mella, M. R. (2021). Vegetable tannins, ruminal microbiota and ruminant metabolism interaction. Tropical and Subtropical Agroecosystems, 25(1).

Eugenio, F. A., Van Milgen, J., Duperray, J., Sergheraert, R., & Le Floc’h, N. (2022). Feeding intact proteins, peptides, or free amino acids to monogastric farm animals. Amino Acids, 54(2), 157–168.

Fonseca, N. V. B., Cardoso, A. da S., Bahia, A. S. R. de S., Messana, J. D., Vicente, E. F., & Reis, R. A. (2023). Additive tannins in ruminant nutrition: An alternative to achieve sustainability in animal production. Sustainability, 15(5), 4162.

Gami, R., Thakur, S. S., & Mahesh, M. S. (2017). Protein sparing effect of dietary rumen protected lysine plus methionine in growing Murrah buffaloes (Bubalus bubalis). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87, 885–891.

Garcia-Oliveira, P., Fraga-Corral, M., Carpena, M., Prieto, M. A., & Simal-Gandara, J. (2022). Approaches for sustainable food production and consumption systems. In Future foods (pp. 23–38). Elsevier.

Garcia, M., Bradford, B. J., & Nagaraja, T. G. (2017). Invited review: ruminal microbes, microbial products, and systemic inflammation. The Professional Animal Scientist, 33(6), 635–650.

Gelaye, Y. (2024). Application of nanotechnology in animal nutrition: Bibliographic review. Cogent Food & Agriculture, 10(1), 2290308.

Getachew, G., Pittroff, W., Putnam, D. H., Dandekar, A., Goyal, S., & DePeters, E. J. (2008). The influence of addition of gallic acid, tannic acid, or quebracho tannins to alfalfa hay on in vitro rumen fermentation and microbial protein synthesis. Animal Feed Science and Technology, 140(3–4), 444–461.

Goel, G., Puniya, A. K., Aguilar, C. N., & Singh, K. (2005). Interaction of gut microflora with tannins in feeds. Naturwissenschaften, 92, 497–503.

Granados-Chinchilla, F., Maldonado, E. A. L., & Solangi, A. R. (n.d.). Safety Issues and Regulatory Challenges of Nanoproducts in Food. In Nanobiotechnology for Sustainable Food Management (pp. 340–359). CRC Press.

Gressler, S., Hipfinger, C., Part, F., Pavlicek, A., Zafiu, C., & Giese, B. (2025). A systematic review of nanocarriers used in medicine and beyond—definition and categorization framework. Journal of Nanobiotechnology, 23(1), 90.

Gu, Q., Lu, G., Han, J., McClements, D. J., Ma, C., Liu, X., & Liu, F. (2025). Design, fabrication, and performance evaluation of curcumin-loaded nanoparticles based on zein, hyaluronic acid, and tannic acid. International Journal of Biological Macromolecules, 309, 142884.

Gurunathan, K. (2022). Application of Nanoparticles for Quality and Safety Enhancement of Foods of Animal Origin. In Nanotechnology in Agriculture and Environmental Science (pp. 227–260). CRC Press.

Haskell, M. J., Rooke, J. A., Roehe, R., Turner, S. P., Hyslop, J. J., Waterhouse, A., & Duthie, C.-A. (2019). Relationships between feeding behaviour, activity, dominance and feed efficiency in finishing beef steers. Applied Animal Behaviour Science, 210, 9–15.

Hess, H. D., Valencia, F. L., Monsalve, L. M., Lascano, C. E., & Kreuzer, M. (2004). Effects of tannins in Calliandra calothyrsus and supplemental molasses on ruminal fermentation in vitro. Journal of Animal and Feed Sciences, 13, 95–98.

Houng, S. (2009). Synthesis and characterization of folate-PEG-conjugated polysaccharide nanoparticles for potential use as a targeted DNA carrier.

Jiang, Y., Dai, P., Zhang, Y., & Wang, Z. (2021). Effects of subacute ruminal acidosis on rumen physiological function and substance absorption and transportation of ruminants.

Khiaosa-Ard, R., & Zebeli, Q. (2014). Cattle’s variation in rumen ecology and metabolism and its contributions to feed efficiency. Livestock Science, 162, 66–75.

Kleen, J. L., & Guatteo, R. (2023). Precision livestock farming: What does it contain and what are the perspectives? Animals, 13(5), 779.

Kshtriya, V., Koshti, B., & Gour, N. (2021). Green synthesized nanoparticles: Classification, synthesis, characterization, and applications. In Comprehensive analytical chemistry (Vol. 94, pp. 173–222). Elsevier.

Kumar, N., Singh, H., & Sharma, S. K. (2020). Antioxidants: responses and importance in plant defense system. Sustainable Agriculture in the Era of Climate Change, 251–264.

Laca, E. A. (2009). Precision livestock production: tools and concepts. Revista Brasileira de Zootecnia, 38, 123–132.

Lian, H., Zhang, C., Liu, Y., Li, W., Fu, T., Gao, T., & Zhang, L. (2022). In vitro gene expression responses of bovine rumen epithelial cells to different pH stresses. Animals, 12(19), 2621.

Liang, Z., Zhang, J., Zheng, J., & Ding, X. (2020). Tannin: biological function and its advances inresearch on ruminant nutrition.

Lu, Z., Shen, H., & Shen, Z. (2018). High-concentrate diet-induced change of cellular metabolism leads to decreases of immunity and imbalance of cellular activities in rumen epithelium. Cellular Physiology and Biochemistry, 45(5), 2145–2157.

Madureira, A. R., Campos, D., Gullon, B., Marques, C., Rodríguez-Alcalá, L. M., Calhau, C., Alonso, J. L., Sarmento, B., Gomes, A. M., & Pintado, M. (2016). Fermentation of bioactive solid lipid nanoparticles by human gut microflora. Food & Function, 7(1), 516–529.

Makmur, M., Zain, M., Sholikin, M. M., & Jayanegara, A. (2022). Modulatory effects of dietary tannins on polyunsaturated fatty acid biohydrogenation in the rumen: A meta-analysis. Heliyon, 8(7).

Manoni, M., Terranova, M., Amelchanka, S., Pinotti, L., Silacci, P., & Tretola, M. (2023). Effect of ellagic and gallic acid on the mitigation of methane production and ammonia formation in an in vitro model of short-term rumen fermentation. Animal Feed Science and Technology, 305, 115791.

Martínez, T. F., McAllister, T. A., Wang, Y., & Reuter, T. (2006). Effects of tannic acid and quebracho tannins on in vitro ruminal fermentation of wheat and corn grain. Journal of the Science of Food and Agriculture, 86(8), 1244–1256.

Martínez, T. F., Moyano, F. J., Diaz, M., Barroso, F. G., & Alarcón, F. J. (2004). Ruminal degradation of tannin‐treated legume meals. Journal of the Science of Food and Agriculture, 84(14), 1979–1987.

Maurya, P. K., & Singh, S. (2019). Nanotechnology in Modern Animal Biotechnology: Concepts and Applications.

McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial resistance: a one health perspective. Antimicrobial Resistance in Bacteria from Livestock and Companion Animals, 521–547.

Mlambo, V., & Mapiye, C. (2015). Towards household food and nutrition security in semi-arid areas: What role for condensed tannin-rich ruminant feedstuffs? Food Research International, 76, 953–961.

Molina, A. (2019). Probiotics and their mechanism of action in animal feed. Agronomía Mesoamericana, 30(2), 601–611.

Morales, A., Buenabad, L., Castillo, G., Espinoza, S., Arce, N., Bernal, H., Htoo, J. K., & Cervantes, M. (2020). Serum concentration of free amino acids in pigs of similar performance fed diets containing protein-bound or protein-bound combined with free amino acids. Animal Feed Science and Technology, 267, 114552.

Mueller-Harvey, I., Bee, G., Dohme-Meier, F., Hoste, H., Karonen, M., Kölliker, R., Lüscher, A., Niderkorn, V., Pellikaan, W. F., & Salminen, J.-P. (2019). Benefits of condensed tannins in forage legumes fed to ruminants: importance of structure, concentration, and diet composition. Crop Science, 59(3), 861–885.

Muttathettu, V. A., & Anitha, P. (2023). Biological prospects and potential of nanoparticles in animal nutrition. In Applications of Multifunctional Nanomaterials (pp. 525–541). Elsevier.

Oliveira, S. G., & Berchielli, T. T. (2007). Potentiality of tannins used in forages conservation and ruminant nutrition-a review.

Ovani, V., de Azevedo Olival, A., Morais, V. A., Bertolazi, A. A., da Silva Folli-Pereira, M., Eutrópio, F. J., do Carmo Silva, B., de Souza, B. G., Arpini-Costa, C. M., & de Jesus, E. C. (2025). Achieving net-zero emission through greenhouse gases emissions reduction in animal production. In Agriculture Toward Net Zero Emissions (pp. 347–368). Elsevier.

Paolino, R., Di Trana, A., Coppola, A., Sabia, E., Riviezzi, A. M., Vignozzi, L., Claps, S., Caparra, P., Pacelli, C., & Braghieri, A. (2025). May the Extensive Farming System of Small Ruminants Be Smart? Agriculture, 15(9), 929.

Papakonstantinou, G. I., Voulgarakis, N., Terzidou, G., Fotos, L., Giamouri, E., & Papatsiros, V. G. (2024). Precision livestock farming technology: applications and challenges of animal welfare and climate change. Agriculture, 14(4), 620.

Patra, A. K., & Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture, 91(1), 24–37.

Pawar, A. P., Naktode, K. S., & Mungole, A. J. (2023). Green synthesis of silver nanoparticles from whole plant extract analyzed for characterization, antioxidant, and antibacterial properties. Physics and Chemistry of Solid State, 24(4), 640–649.

Pokharel, S., Shrestha, P., & Adhikari, B. (2020). Antimicrobial use in food animals and human health: time to implement ‘One Health’approach. Antimicrobial Resistance & Infection Control, 9, 1–5.

Pomar, C., & Remus, A. (2023). Fundamentals, limitations and pitfalls on the development and application of precision nutrition techniques for precision livestock farming. Animal, 17, 100763.

Rahmatillah, R. S., Ramdani, D., Hernaman, I., Jayanegara, A., & Hidayatik, N. (2024). Evaluation of the effects of green tea extract as a dietary supplement in sheep on gas production, volatile fatty acids, and digestibility. Veterinary World, 17(10), 2204.

Raja, P. B., Rahim, A. A., Qureshi, A. K., & Awang, K. (2014). Green synthesis of silver nanoparticles using tannins. Materials Science-Poland, 32, 408–413.

Ramdani, D., Yuniarti, E., Jayanegara, A., & Chaudhry, A. S. (2023). Roles of essential oils, polyphenols, and saponins of medicinal plants as natural additives and anthelmintics in ruminant diets: A systematic review. Animals, 13(4), 767.

Reddy, B. S., Sivajothi, S., Raghavi, D. N., & Karthik, P. (n.d.). Clinical Physiology of Digestive Disorders in Ruminants. In Fundamentals of Veterinary Pathophysiology (pp. 103–118). CRC Press.

Rennó, F. P., Takiya, C. S., Ceron, B. M., Poletti, G., Vitor, A. C. S., da Silva, J. R., Grigoletto, N. T. S., da Silva, G. G., Pereira, N. M., & Brutti, D. D. (2025). Low levels of condensed tannins enhance lactation performance in dairy cows. Animal Feed Science and Technology, 325, 116349.

Rivero, M. J., Lopez-Villalobos, N., Evans, A., Berndt, A., Cartmill, A., Neal, A. L., McLaren, A., Farruggia, A., Mignolet, C., & Chadwick, D. (2021). Key traits for ruminant livestock across diverse production systems in the context of climate change: perspectives from a global platform of research farms. Reproduction, Fertility and Development, 33(2), 1–19.

Riviere, J. E. (2012). Nanoscale feed ingredients and animal and human health. In Animal Feed Contamination (pp. 540–553). Elsevier.

Robinson, P. H., Swanepoel, N., & Evans, E. (2010). Effects of feeding a ruminally protected lysine product, with or without isoleucine, valine and histidine, to lactating dairy cows on their productive performance and plasma amino acid profiles. Animal Feed Science and Technology, 161(3–4), 75–84.

Rodríguez, R., De La Fuente, G., Gómez, S., & Fondevila, M. (2013). Biological effect of tannins from different vegetal origin on microbial and fermentation traits in vitro. Animal Production Science, 54(8), 1039–1046.

Rushton, J. (2015). Anti‐microbial use in animals: how to assess the trade‐offs. Zoonoses and Public Health, 62, 10–21.

Ryabova, Y. V, Sutunkova, M. P., Minigalieva, I. A., Shabardina, L. V, Filippini, T., & Tsatsakis, A. (2024). Toxicological effects of selenium nanoparticles in laboratory animals: A review. Journal of Applied Toxicology, 44(1), 4–16.

Samanidou, V. F., & Evaggelopoulou, E. N. (2008). Chromatographic analysis of banned antibacterial growth promoters in animal feed. Journal of Separation Science, 31(11), 2091–2112.

Saratale, R. G., Saratale, G. D., Ahn, S., & Shin, H.-S. (2021). Grape pomace extracted tannin for green synthesis of silver nanoparticles: Assessment of their antidiabetic, antioxidant potential and antimicrobial activity. Polymers, 13(24), 4355.

Schmitz-Esser, S. (2021). The rumen epithelial microbiota: possible gatekeepers of the rumen epithelium and its potential contributions to epithelial barrier function and animal health and performance. Meat and Muscle Biology, 4(2).

Shahin, K. I., Lazarova-Molnar, S., & Niloofar, P. (2023). Multi-objective decision support tool for sustainable livestock farming. 2023 8th International Conference on Smart and Sustainable Technologies (SpliTech), 1–6.

Shahzad, K., Khan, M. N., Jabeen, F., Kosour, N., Sohail, M., Khan, M. K. A., & Ahmad, M. (2017). Bioaccumulation of manufactured titanium dioxide (TiO2), copper oxide (CuO) and zinc oxide (ZnO) nanoparticles in soft tissues of tilapia (Oreochromis mossambicus). Punjab Univ J Zool, 32(2), 237–243.

Shannon, M. C., & Hill, G. M. (2019). Trace mineral supplementation for the intestinal health of young monogastric animals. Frontiers in Veterinary Science, 6, 73.

Smith, A. H., Zoetendal, E., & Mackie, R. I. (2005). Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microbial Ecology, 50, 197–205.

Srivastava, S. (2023). Ethical issues regarding the use of nanobiotechnology-based products. In Nanobiotechnology for the livestock industry (pp. 435–473). Elsevier.

Srivastava, S., & Srivastava, S. (2023). Bioregulation of nanobiotechnology-based livestock products. In Nanobiotechnology for the Livestock Industry (pp. 425–434). Elsevier.

Tatli Seven, P., Seven, I., Gul Baykalir, B., Iflazoglu Mutlu, S., & Salem, A. Z. M. (2018). Nanotechnology and nano-propolis in animal production and health: An overview. Italian Journal of Animal Science, 17(4), 921–930.

Tavakoli, S., Ebrahimzadeh, M. A., Habibi, E., Biparva, P., Mohammadi, H., Zahedi Mazandarani, A., Vafaeinejad, S., Ziar, A., & Eslami, S. (2020). Sub-chronic intraperitonealy toxicity assessments of modified silver nanoparticles capped coated Myrtus communis-derived the hydrolyzable tannins in a mice model. Nanomedicine Research Journal, 5(3), 288–297.

Tavakoli, S., Ebrahimzadeh, M. A., Sameni, F., Biparva, P., Mohammadi, H., Ziar, A., Zahedi Mazandarani, A., Vafaeinejad, S., & Eslami, S. (2020). Excess iron ion reduction in a thalassemia model using silver nanoparticles modified by the tannin fraction of Myrtus communis extact. Nanomedicine Research Journal, 5(4), 355–363.

Taylor, J., Taylor, J. R. N., Belton, P. S., & Minnaar, A. (2009). Kafirin microparticle encapsulation of catechin and sorghum condensed tannins. Journal of Agricultural and Food Chemistry, 57(16), 7523–7528.

van den Borne, J. J. G. C., Alferink, S. J. J., Heetkamp, M. J. W., Jacobs, A. A. A., Verstegen, M. W. A., & Gerrits, W. J. J. (2012). Asynchronous supply of indispensable amino acids reduces protein deposition in milk-fed calves, 3. The Journal of Nutrition, 142(12), 2075–2082.

Vranken, E., & Berckmans, D. (2017). Precision livestock farming for pigs. Animal Frontiers, 7(1), 32–37.

Wanapat, M., Kongmun, P., Poungchompu, O., Cherdthong, A., Khejornsart, P., Pilajun, R., & Kaenpakdee, S. (2012). Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology. Tropical Animal Health and Production, 44, 399–405.

Wang, Y., Yu, S., Zhao, Y., & Jiang, L. (2023). Research progress on tannins regulated rumen biohydrogenation in ruminants.

Weese, J. S., Junior, G. A. D. C., Gonzalez-Zorn, B., Hardefeldt, L. Y., Matheu, J., Moulin, G., Page, S. W., Singh, R., Song, J., & Valsson, O. (2022). Governance processes and challenges for reservation of antimicrobials exclusively for human use and restriction of antimicrobial use in animals. Journal of Law, Medicine & Ethics, 50(S2), 55–63.

Wijesekara, W. L. I., Gokila, S., Gomathi, T., Prasad, S., Deepa, M., & Sudha, P. N. (2023). Bio-nanotechnology in agriculture: new opportunities and future prospects. In Nanobiomaterials (pp. 314–322). CRC Press.

Xiao, Y., Vijver, M. G., Chen, G., & Peijnenburg, W. J. G. M. (2015). Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. Environmental Science & Technology, 49(7), 4657–4664.

Yadava, Y. P., Raju, V., Chathoth, A. M., Vasu, A. E., Vijayaraghavan, R., & Surendran, A. K. (2025). Characterization and antifungal potential of green-synthesized copper nanoparticles using waste leaf biomass. Chemical Papers, 1–15.

Yanza, Y. R., Fitri, A., Suwignyo, B., Hidayatik, N., Kumalasari, N. R., Irawan, A., & Jayanegara, A. (2021). The utilisation of tannin extract as a dietary additive in ruminant nutrition: A meta-analysis. Animals, 11(11), 3317.

Yepes, F. A. L., Mann, S., Overton, T. R., Behling-Kelly, E., Nydam, D. V, & Wakshlag, J. J. (2021). Hepatic effects of rumen-protected branched-chain amino acids with or without propylene glycol supplementation in dairy cows during early lactation. Journal of Dairy Science, 104(9), 10324–10337.

Young, J. M., & Dekkers, J. C. M. (2012). The genetic and biological basis of residual feed intake as a measure of feed efficiency. In Feed efficiency in swine (pp. 153–166). Wageningen Academic.

ZHANG, J., GE, Z., LIU, R., ZHONG, Q., & SUN, Z. (2024). Tannin Species and Dose Effects in Ruminant Production. Acta Agrestia Sinica, 32(8), 2337.

Zhu, X., Chang, Y., & Chen, Y. (2010). Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 78(3), 209–215.