Effect of Al dopant on Physical and Optical Properties of Er-doped CuS prepared by co-precipitation process
Main Article Content
Abstract
Considering the pressing demand for energy conservation, sustainable solutions in the building sector have become paramount. This study focuses on the development of sustainable, energy-efficient technologies for window glasses and transparent solar shielding film materials. The primary objective is to achieve a delicate balance: enabling the transmission of visible light while effectively shielding against Near Infrared Radiation (NIR). Copper sulfide (CuS) emerges as a promising p-type semiconductor material due to its favorable NIR shielding performance. In this research, CuS particles were synthesized via a simple co-precipitation method. Additionally, with the certain dopant ratios of erbium (Er) as rare earth dopants and the various dopant ratios of aluminum (Al), explore the enhancement of the solar spectral selectivity. The X-ray diffraction technique was used to characterize the crystalline structure of the synthesized powders, while X-ray photoelectron spectroscopy was utilized to explore the valence states of the samples. Furthermore, the optical properties of the synthesized powders and prepared thin films were observed using a diffuse reflectance spectrophotometer. Lastly, the thermal insulation performance of the prepared thin films was evaluated using a custom device, supplemented by an infrared lamp. The NIR shielding performance was assessed by examining the lowest transmittance in the NIR region, attributed to changes in the valence state induced by the dopant, thereby enhancing the semiconducting behavior of CuS.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ahmad, T., & Zhang, D. (2020). A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Reports, 6, 1973–1991. DOI: 10.1016/j.egyr.2020.07.020.
Alim, M. A., Tao, Z., Hassan, M. K., Rahman, A., Wang, B., Zhang, C., & Samali, B. (2019). Is it time to embrace building integrated Photovoltaics? A review with particular focus on Australia. Solar Energy, 188, 1118–1133. DOI: 10.1016/j.solener.2019.07.002.
Ke, Y., Zhou, C., Zhou, Y., Wang, S., Chan, S. H., & Long, Y. (2018). Emerging Thermal‐ Responsive Materials and Integrated Techniques targeting the Energy‐Efficient Smart Window Application. Advanced Functional Materials, 28(22), 1800113. DOI: 10.1002/adfm.201800113.
Cai, L., Wu, X., Gao, Q., & Fan, Y. (2018). Effect of morphology on the near infrared shielding property and thermal performance of K0.3WO3 blue pigments for smart window applications. Dyes and Pigments, 156, 33–38. DOI: 10.1016/j.dyepig.2018.03.074.
Kumar, G. K., Saboor, S., & Babu, T. A. (2017). Study of various glass window and building wall materials in different climatic zones of India for energy efficient building construction. Energy Procedia, 138, 580–585. DOI: 10.1016/j.egypro.2017.10.163.
Ke, Y., Chen, J., Lin, G., Wang, S., Zhou, Y., Yin, J., Lee, P. S., & Long, Y. (2019). Smart Windows: electro‐, thermo‐, mechano‐, photochromics, and beyond. Advanced Energy Materials, 9(39), 1902066. DOI: 10.1002/aenm.201970153.
Xu, X., Zhang, W., Hu, Y., Wang, Y., Lu, L., & Wang, S. (2017). Preparation and overall energy performance assessment of wide waveband two-component transparent NIR shielding coatings. Solar Energy Materials and Solar Cells, 168, 119–129. DOI: 10.1016/j.solmat.2017.04.032.
Sousa-Castillo, A., Ameneiro-Prieto, Ó., Comesaña-Hermo, M., Yu, R., Vila-Fungueiriño, J. M., Pérez-Lorenzo, M., Rivadulla, F., De Abajo, F. J. G., & Correa-Duarte, M. A. (2017). Hybrid plasmonic nanoresonators as efficient solar heat shields. Nano Energy, 37, 118–125. DOI: 10.1016/ j.nanoen.2017.05.014.
Zhong, Q., Macharia, D. K., Zhong, W., Liu, Z., & Chen, Z. (2020). Synthesis of hydrophobic W18O49 nanorods for constructing UV/NIR-shielding and self-cleaning film. Ceramics International, 46(8), 11898–11904. DOI: 10.1016/j.ceramint.2020.01.226.
Li, B., Yao, J., Tian, S., Fang, Z., Wu, S., Liu, B., Gong, X., Tao, H., & Zhao, X. (2020). A facile one-step annealing route to prepare thermochromic W doped VO2(M) particles for smart windows. Ceramics International, 46(11), 18274–18280. DOI: 10.1016/j.ceramint.2020.05.042. [11] Zhou, Q., Lv, W., Qiu, Q., Zhou, T., Huang, C., & Li, L. (2019). Boron doped M-phase VO2
nanoparticles with low metal-insulator phase transition temperature for smart windows. Ceramics International, 46(4), 4786–4794. DOI: 10.1016/j.ceramint.2019.10.211.
Kim, K., Koo, B., & Ahn, H. (2019). Effects of Sb-doped SnO2-WO3 nanocomposite on electrochromic performance. Ceramics International, 45(13), 15990–15995. DOI: 10.1016/j. ceramint.2019.05.109.
Wang, S., Li, C., Tian, S., Liu, B., & Zhao, X. (2020). Facile synthesis of VO2(D) and its transformation to VO2(M) with enhanced thermochromic properties for smart windows. Ceramics International, 46(10), 14739–14746. DOI: 10.1016/j.ceramint.2020.02.278.
Yu, Z., Yao, Y., Yao, J., Zhang, L., Chen, Z., Gao, Y., & Luo, H. (2017). Transparent wood containing CsxWO3 nanoparticles for heat-shielding window applications. Journal of Materials Chemistry A, 5(13), 6019–6024. DOI: 10.1039/c7ta00261k.
Takeda, H., Kuno, H., & Adachi, K. (2008). Solar control dispersions and coatings with Rare‐Earth hexaboride nanoparticles. Journal of the American Ceramic Society, 91(9), 2897–2902. DOI: 10.1111/j.1551-2916.2008.02512.x.
Zhou, Y., Li, N., Xin, Y., Cao, X., Ji, S., & Jin, P. (2017). CsxWO3 nanoparticle-based organic polymer transparent foils: low haze, high near infrared-shielding ability and excellent photochromic stability. Journal of Materials Chemistry C, 5(25), 6251–6258. DOI: 10.1039/c7tc01616f.
Lee, H. Y., Cai, Y., Bi, S., Liang, Y. N., Song, Y., & Hu, X. M. (2017). A Dual-Responsive Nanocomposite toward Climate-Adaptable Solar Modulation for Energy-Saving Smart Windows. ACS Applied Materials & Interfaces, 9(7), 6054–6063. DOI: 10.1021/acsami.6b15065.
Gao, Q., Wu, X., & Cai, L. (2019). Dual functionality of K0.3WO3/Ag2O nanocomposites for smart window: Energy saving and visible photocatalytic self-cleaning performance. Solar Energy Materials and Solar Cells, 196, 111–118. DOI: 10.1016/j.solmat.2019.03.042.
Chen, Y., Zeng, X., Zhou, Y., Li, R., Yao, H., Cao, X., & Jin, P. (2017). Core-shell structured CsxWO3 @ZnO with excellent stability and high performance on near-infrared shielding. Ceramics International, 44(3), 2738–2744. DOI: 10.1016/j.ceramint.2017.11.004.
Wang, M., Bu, J., Xu, Y., Liu, Y., & Yang, Y. (2020). Sb-doped SnO2 (ATO) hollow submicron spheres for solar heat insulation coating. Ceramics International, 47(1), 547–555. DOI: 10.1016/ j.ceramint.2020.08.162.
Xiao, L., Su, Y., Qiu, W., Liu, Y., Ran, J., Wu, J., Lu, F., Shao, F., Tang, D., & Peng, P. (2016). Solar radiation shielding properties of transparent LaB6 filters through experimental and first- principles calculation methods. Ceramics International, 42(12), 14278–14281. DOI: 10.1016/ j.ceramint.2016.05.105.
Shen, B., Wang, Y., Lu, L., & Yang, H. (2020). Synthesis and characterization of Sb-doped SnO2 with high near-infrared shielding property for energy-efficient windows by a facile dual-titration co-precipitation method. Ceramics International, 46(11), 18518–18525. DOI: 10.1016/j.ceramint. 2020.04.157.
Yao, Y., Zhang, L., Chen, Z., Cao, C., Gao, Y., & Luo, H. (2018). Synthesis of Cs WxO3 nanoparticles and their NIR shielding properties. Ceramics International, 44(12), 13469–13475. DOI: 10.1016/j.ceramint.2018.04.158.
Nimitnopphasit, P., Wattana, J., Kansaard, T., Mekprasart, W., Boonyarattanakalin, K., Jayasankar, C., & Phoohinkong, W. (2024). Physical and Optical Properties of Al/Yb-dually incorporated CuS Particles Prepared by Facile Co-precipitation Process. Thai Journal of Nanoscience and Nanotechnology, 9(2), 11–21. DOI: 10.55003/tjnn9220242.
Jiang, K., Chen, Z., & Meng, X. (2019). CuS and Cu2S as Cathode Materials for Lithium Batteries: A Review. ChemElectroChem, 6(11), 2825–2840. DOI: 10.1002/celc.201900066.
Chen, X., Yang, J., Wu, T., Li, L., Luo, W., Jiang, W., & Wang, L. (2018). Nanostructured binary copper chalcogenides: synthesis strategies and common applications. Nanoscale, 10(32), 15130– 15163. DOI: 10.1039/c8nr05558k.
Shamraiz, U., Hussain, R. A., & Badshah, A. (2016). Fabrication and applications of copper sulfide (CuS) nanostructures. Journal of Solid State Chemistry, 238, 25–40. DOI: 10.1016/j.jssc.2016. 02.046.
Hsu, S., Bryks, W., & Tao, A. R. (2012). Effects of carrier density and shape on the localized surface plasmon resonances of CU2–XS nanodisks. Chemistry of Materials, 24(19), 3765–3771. DOI: 10.1021/cm302363x.
Wei, T., Liu, Y., Dong, W., Zhang, Y., Huang, C., Sun, Y., Chen, X., & Dai, N. (2013). Surface- Dependent localized surface plasmon resonances in CUS nanodisks. ACS Applied Materials & Interfaces, 5(21), 10473–10477. DOI: 10.1021/am4039568.
Rokade, A. A., Jin, Y. E., & Park, S. S. (2018). Facile synthesis of plate-like CuS nanoparticles and their optical and photo-thermal properties. Materials Chemistry and Physics, 207, 465–469. DOI: 10.1016/j.matchemphys.2017.12.077.
Kwon, Y., Lim, G., Kim, S., Ryu, S. H., Lim, H., & Choa, Y. (2017). Effect of localized surface plasmon resonance on dispersion stability of copper sulfide nanoparticles. Applied Surface Science, 477, 204–210. DOI: 10.1016/j.apsusc.2017.11.006.
Kwon, Y., Lim, G., Kim, S., Ryu, S. H., Hwang, T., Park, K., & Choa, Y. (2017). Near-infrared absorbance properties of Cu2−xS/SiO2 nanoparticles and their PDMS-based composites. Journal of Materials Chemistry C, 6(4), 754–760. DOI: 10.1039/c7tc04784c.
Kalanur, S. S., & Seo, H. (2018). Synthesis of CuxS Thin Films with Tunable Localized Surface Plasmon Resonances. ChemistrySelect, 3(21), 5920–5926. DOI: 10.1002/slct.201800441. [34] Luther, J. M., Jain, P. K., Ewers, T., & Alivisatos, A. P. (2011). Localized surface plasmon
resonances arising from free carriers in doped quantum dots. Nature Materials, 10(5), 361–366. DOI: 10.1038/nmat3004.
Comin, A., & Manna, L. (2014). New materials for tunable plasmonic colloidal nanocrystals. Chemical Society Reviews, 43(11), 3957–3975. DOI: 10.1039/c3cs60265f.
Banumathi, T. V., & Sudha, J. S. (2021). Impact of doping transition metal in optically sensitive CuS with as prepared CuS. AIP Conference Proceedings, 2369(1), 020125. DOI: 10.1063/ 5.0061043.
Gao, Q., Wu, X., & Huang, T. (2021). Novel energy efficient window coatings based on In doped CuS nanocrystals with enhanced NIR shielding performance. Solar Energy, 220, 1–7. DOI: 10.1016/j.solener.2021.02.045.
Gao, Q., Wu, X., & Huang, T. (2021). Greatly improved NIR shielding performance of CuS nanocrystals by gallium doping for energy efficient window. Ceramics International, 47(17), 23827–23833. DOI: 10.1016/j.ceramint.2021.05.090.
Bo, S., Hu, J., Wang, Q., Liu, X., & Zhen, Z. (2008). Near-infrared luminescence properties of erbium complexes with the substituted phthalocyaninato ligands. Photochemical & Photobiological Sciences, 7(4), 474–479. DOI: 10.1039/b715809b.
Hu, J. X., Karamshuk, S., Gorbaciova, J., Ye, H. Q., Lu, H., Zhang, Y. P., Zheng, Y. X., Liang, X., Hernández, I., Wyatt, P. B., & Gillin, W. P. (2018). High sensitization efficiency and energy transfer routes for population inversion at low pump intensity in Er organic complexes for IR amplification. Scientific Reports, 8(1), 3226. DOI: 10.1038/s41598-018-21700-7.
Jing, J., Gu, X., Zhang, S., Sun, J., Chen, Y., & Sun, T. (2019). Doping of aluminum (Al) into copper sulfide (CuS) nanocrystals enhanced their solar spectral selectivity. CrystEngComm, 21(33), 4969–4975. DOI: 10.1039/c9ce00668k.
Xie, Y., Chen, W., Bertoni, G., Kriegel, I., Xiong, M., Li, N., Prato, M., Riedinger, A., Sathya, A., & Manna, L. (2017). Tuning and Locking the Localized Surface Plasmon Resonances of CuS (Covellite) Nanocrystals by an Amorphous CuPdxS Shell. Chemistry of Materials, 29(4), 1716- 1723. DOI: 10.1021/acs.chemmater.6b05184.
Guo, H., & Qiao, Y. M. (2008). Preparation, characterization, and strong upconversion of monodisperse Y2O3:Er3+ ,Yb3+ microspheres. Optical Materials, 31(4), 583–589. DOI: 10.1016/j.optmat.2008.06.011.
Giribabu, K., Oh, S. Y., Suresh, R., Kumar, S. P., Manigandan, R., Munusamy, S., Gnanamoorthy, G., Kim, J. Y., Huh, Y. S., & Narayanan, V. (2016). Sensing of picric acid with a glassy carbon electrode modified with CuS nanoparticles deposited on nitrogen-doped reduced graphene oxide. Microchimica Acta, 183(8), 2421–2430. DOI: 10.1007/s00604-016-1883-7.
Li, X., Zhang, W., Sun, J., Liu, J., Hou, Y., Lin, L., He, K., & Yi, K. (2013). Influence of oxygen pressure and substrate temperature on the properties of aluminum fluoride thin films. Applied Surface Science, 282, 226–230. DOI: 10.1016/j.apsusc.2013.05.108.
Ram, S., & Mondal, A. (2003). X-ray photoelectron spectroscopic studies of Al3+ stabilized t-ZrO2 of nanoparticles. Applied Surface Science, 221(1–4), 237–247. DOI: 10.1016/s0169-4332(03) 00883-3.
Sanzaro, S., La Magna, A., Smecca, E., Mannino, G., Pellegrino, G., Fazio, E., Neri, F., & Alberti, A. (2016). Controlled AL3+ incorporation in the ZnO lattice at 188 °C by soft reactive Co-Sputtering for transparent conductive oxides. Energies, 9(6), 433. DOI: 10.3390/en9060433.
Jiang, J., Liu, X. X., Han, J., Hu, K., & Chen, J. S. (2021). Self-Supported Sheets-on-Wire CuO@Ni(OH)2/Zn(OH)2 Nanoarrays for High-Performance Flexible Quasi-Solid-State Supercapacitor. Processes, 9(4), 680. DOI: 10.3390/pr9040680.
Subramanyam, K., Sreelekha, N., Reddy, D. A., Murali, G., Ramanadha, M., Varma, K. R., Kumar, A. V., & Vijayalakshmi, R. P. (2017). Influence of Mn doping on structural, photoluminescence and magnetic characteristics of Covellite-Phase CuS nanoparticles. Journal of Superconductivity and Novel Magnetism, 31(4), 1161–1165. DOI: 10.1007/s10948-017-4296-x.
Ravele, M. P., Oyewo, O. A., & Onwudiwe, D. C. (2021). Controlled Synthesis of CuS and Cu9S5 and Their Application in the Photocatalytic Mineralization of Tetracycline. Catalysts, 11(8), 899. DOI: 10.3390/catal11080899.
Hosseinpour, Z., Alemi, A., Khandar, A. A., Zhao, X., & Xie, Y. (2015). A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties. New Journal of Chemistry, 39(7), 5470–5476. DOI: 10.1039/c4nj02298j.
Faucheaux, J. A., Stanton, A. L. D., & Jain, P. K. (2014). Plasmon Resonances of Semiconductor nanocrystals: Physical principles and new Opportunities. The Journal of Physical Chemistry Letters, 5(6), 976–985. DOI: 10.1021/jz500037k.
Li, Y., Pizer, W. A., & Wu, L. (2018). Climate change and residential electricity consumption in the Yangtze River Delta, China. Proceedings of the National Academy of Sciences, 116(2), 472– 477. DOI: 10.1073/pnas.1804667115.