Enhanced Piezo-Photocatalytic Degradation of Rhodamine B Using Different ZnO Nanostructures Under Xenon Irradiation and Ultrasonic Activation

Main Article Content

Wanichaya Mekprasart
Suttida Dorweng
Maneerat Songpanit
Kanokthip Boonyarattanakalin

Abstract

The contamination of wastewater with synthetic organic dyes has become a significant environmental challenge. To address this issue, zinc oxide (ZnO) has attracted considerable attention due to its non-toxic nature and versatile applications, especially in photocatalytic materials. Enhancing the efficiency of photocatalysis requires reducing electron-hole recombination, which can be achieved through doping or composite formation with other materials. Additionally, the integration of piezoelectric properties presents an effective strategy to enhance ZnO-based photocatalysts, given their excellent piezoelectric characteristics. In this study, the piezo-photocatalysis properties of ZnO nanostructures with spherical, plate-like, and rod-like morphologies were systematically investigated under xenon lamp irradiation coupled with piezo-mechanical stimulation. Rhodamine B (RhB) was employed as a model dye to evaluate photocatalytic performance under various conditions, for example, light irradiation, piezo-assisted activation combined with light irradiation, and the absence of light. The absorbance of the dyes under photocatalytic reaction was then measured using a UV-visible spectrophotometer. The experimental results revealed that the highest dye degradation efficiency was achieved when using rod-like ZnO photocatalyst under combined piezo-assisted and light irradiation. This superior performance can be attributed to its asymmetric geometry, which enhances the generation of an internal electric field on the photocatalyst surface under piezoelectric activation, thereby promoting efficient charge separation. Moreover, the 1D structure of the rod-like facilitates directed electron transport along its longitudinal axis and provides a higher density of active sites, contributing further to their enhanced photocatalytic activity.

Article Details

How to Cite
1.
Mekprasart W, Dorweng S, Songpanit M, Boonyarattanakalin K. Enhanced Piezo-Photocatalytic Degradation of Rhodamine B Using Different ZnO Nanostructures Under Xenon Irradiation and Ultrasonic Activation. Thai J. Nanosci. Nanotechnol. [internet]. 2025 Jun. 30 [cited 2025 Jul. 1];10(1):15-26. available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/183
Section
Research Articles

References

Rad, S. M., Ray, A. K., & Barghi, S. (2022). Water Pollution and Agriculture Pesticide. Clean Technologies, 4(4), 1088-1102. DOI: 10.3390/cleantechnol4040066.

Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste-water recycling—an overview. RSC Advances, 2(16), 6380-6388. DOI: 10.1039/c2ra20340e.

Metin, S., & Çifçi, D. İ. (2023). Chemical industry wastewater treatment by coagulation combined with Fenton and photo‐Fenton processes. Journal of Chemical Technology & Biotechnology, 98(5), 1158-1165. DOI: 10.1002/jctb.7321.

Pavel, M., Anastasescu, C., State, R. N., Vasile, A., Papa, F., & Balint, I. (2023). Photocatalytic degradation of organic and inorganic pollutants to harmless end products: Assessment of practical application potential for water and air cleaning. Catalysts, 13(2), 380. DOI: 10.3390/catal13020380.

Al-Nuaim, M. A., Alwasiti, A. A., & Shnain, Z. Y. (2023). The photocatalytic process in the treatment of polluted water. Chemicke Zvesti, 77(2), 677-701. DOI: 10.1007/s11696-022-02468-7.

Dharma, H. N. C, Jaafar, J., Widiastuti, N., Matsuyama, H., Rajabsadeh, S., Othman, M. H. D., Rahman, M. A., Jafri, N. N. M., Suhaimin N. S., Nasir A. M., & Alias N. H. (2022). A review of titanium dioxide (TiO2)-based photocatalyst for oilfield-produced water treatment. Membranes, 12(3), 345. DOI: 10.3390/membranes12030345.

Zhu, C., & Wang, X. (2025). Nanomaterial ZnO synthesis and its photocatalytic applications: A review. Nanomaterials, 15(9), 682. DOI: 10.3390/nano15090682.

Ma, H., Hao, B., Song, W., Guo, J., Li, M., & Zhang, L. (2021). A high-efficiency TiO2/ZnO nano-film with surface oxygen vacancies for dye degradation. Materials, 14(12), 3299. DOI: 10.3390/ma14123299.

Nazim, V. S., El-Sayed, G. M., Amer, S. M., & Nadim, A. H. (2023). Optimization of metal dopant effect on ZnO nanoparticles for enhanced visible LED photocatalytic degradation of citalopram: comparative study and application to pharmaceutical cleaning validation. Sustainable Environment Research, 33(1), 39. DOI: 10.1186/s42834-023-00198-3.

Mourya, A. K., Singh, R. P., Kumar, T., Talmale, A. S., Gaikwad, G.S., & Wankhade, A. V. (2023). Tuning the morphologies of ZnO for enhanced photocatalytic activity. Inorganic Chemistry Communications, 154, 110850. DOI: 10.1016/j.inoche.2023.110850.

Zhang, D., Liu, Z., & Mou, R. (2022). Preparation and characterization of WO3/ZnO composite photocatalyst and its application for degradation of oxytetracycline in aqueous solution. Inorganic Chemistry Communications, 142, 109667. DOI: 10.1016/j.inoche.2022.109667.

Mohamadpour, F. & Amani, A. M. (2024). Photocatalytic systems: reactions, mechanism, and applications. RSC Advances, 14(29), 20609-20645. DOI: 10.1039/d4ra03259d.

Su, X., Zhao, X., Cui, C., Xi, N., Zhang, X. L., Liu, H., Yu, X., & Sang, Y. (2022). Influence of wurtzite ZnO morphology on piezophototronic effect in photocatalysis. Catalysts, 12(9), 946. DOI: 10.3390/catal12090946.

Jing, L., Xu, Y., Xie, M., Li, Z., Wu, C., Zhao, H., Wang, J., Wang, H., Yan, Y., Zhong, N., Li, H., & Hu, J. (2023). Piezo-photocatalysts in the field of energy and environment: Designs, applications, and prospects. Nano Energy, 112, 108508. DOI: 10.1016/j.nanoen.2023.108508.

Songpanit, M., Boonyarattanakalin, K., Pecharapa, W., & Mekprasart, W. (2024). ZnO nanostructures synthesized by one-step sol-gel process using different zinc precursors. Journal of Metals, Materials and Minerals, 34(3), 1968. DOI: 10.55713/jmmm.v34i3.1968.

Naik, E. I., Naik, H. S. B., Sarvajith, M. S., & Pradeepa, E. (2021). Co-precipitation synthesis of cobalt doped ZnO nanoparticles: Characterization and their applications for biosensing and antibacterial studies. Inorganic Chemistry Communications, 130, 108678. DOI: 10.1016/j.inoche.2021.108678.

Søndergaard, M. & Boejesen, E., Christensen, M., & Iversen, B. (2011). Size and morphology dependence of ZnO nanoparticles synthesized by a fast continuous flow hydrothermal method. Crystal Growth & Design, 11(9), 4027-4033. DOI: 10.1021/cg200596c.

Raha, S. & Ahmaruzzaman, M. (2022). ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Advances, 4(8), 1868-1925. DOI: 10.1039/d1na00880c.

Chimupala, Y., Phromma, C., Yimklan, S., Semakul, N., & Ruankham, P. (2020). Dye wastewater treatment enabled by piezo-enhanced photocatalysis of single-component ZnO nanoparticles. RSC Advances, 10(48), 28567-28575. DOI:10.1039/d0ra04746e.

Fatimah, S., Ragadhita, R., Al Husaeni, D. F., & Nandiyanto, A. (2021). How to calculate crystallite size from X-ray diffraction (XRD) using Scherrer method. ASEAN Journal of Science and Engineering, 2(1), 65-76. DOI: 10.17509/ajse.v2i1.37647.

Harun, N., S.M.N. Mydin, R. B., Sreekantan, S., Saharudin, K. A., Ling, K. Y., Basiron, N., Radhi, F., & Seeni, A. (2018). Shape-dependent antibacterial activity against Staphylococcus aureus of zinc oxide nanoparticles. Malaysian Journal of Medicine and Health Sciences, 14, 141-146.

Hamzah, Y., Febiola, A., Umar, L. & Salomo. (2024). optical, structural and morphological studies of ZnO nanoparticles synthesized using Terminalia catappa leaf extract. Journal of Physics: Conference Series, 2734, 012035. DOI: 10.1088/1742-6596/2734/1/012035.

Myrick, M. L., Simcock, M. N., Baranowski, M., Brooke, H., Morgan, S. L., & McCutcheon, J. N. (2011). The Kubelka-Munk diffuse reflectance formula revisited. Applied Spectroscopy Reviews, 46(2), 140165. DOI: 10.1080/05704928.2010.537004.

Kumar, S. S., Rao, V. R., & Rao, G. N. (2022). Effect of morphology, crystallite size and optical band gap on photocatalytic activity of ZnO nanostructures for decolorization of R6G. Materials Today: Proceedings, 62, 5494-5502. DOI: 10.1016/j.matpr.2022.04.220.

Hassaan, M. A., El-Nemr, M. A., Elkatory, M. R., Ragab, S., Niculescu, V. C., & Nemr A. E. (2023). Principles of Photocatalysts and Their Different Applications: A Review. Topics in Current Chemistry, 381(6), 31. DOI: 10.1007/s41061-023-00444-7.

Tran, H. D., Nguyen, D. Q., Do, P. T., & Tran, U. N. P. (2023). Kinetics of photocatalytic degradation of organic compounds: a mini-review and new approach. RSC Advances, 13(25), 16915-16925. DOI: 10.1039/d3ra01970e.

Redjili, S., Ghodbane, H., Tahraoui, H., Abdelouahed, L., Chebli, D., Ola, M. S., Assadi, A. A., Kebir, M., Zhang, J., Amrane, A., & Lekmine, S. (2025). Green innovation: Multifunctional zinc oxide nanoparticles synthesized using Quercus robur for photocatalytic performance, environmental, and antimicrobial applications. Catalysts, 15(3), 256. DOI: 10.3390/catal15030256.