The effect of W dopants on the physical and optical properties and photocatalytic activity of ZnO synthesized by the co-precipitation method
Main Article Content
Abstract
Due to the wastewater crisis, tungsten (W)-doped ZnO particles were synthesized with varying W dopant concentrations using the co-precipitation method for the enhancement of photocatalysis application, which can reduce the wastewater crisis by the degradation of pollutant molecules occurring by its process. The crystalline and optical properties of the synthesized powders were analyzed by various methods as well as photocatalytic performance. Among all conditions, the WZ-5 sample exhibited the lowest band gap energy at 3.11 eV and the highest photocatalytic efficiency, achieving 98.16% degradation within 60 minutes. These results demonstrate that tungsten doping can effectively enhance ZnO photocatalytic activity by promoting better charge carrier separation and extending light absorption, especially in the visible region, making W-doped ZnO a promising material for wastewater treatment applications.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P. M., Yakobson, B. I., & Idrobo, J. (2013). Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Letters, 13(6), 2615–2622. DOI: 10.1021/nl4007479.
Yan, F., Zhao, L., Patanè, A., Hu, P., Wei, X., Luo, W., Zhang, D., Lv, Q., Feng, Q., Shen, C., Chang, K., Eaves, L., & Wang, K. (2017). Fast, multicolor photodetection with graphene- contacted p-GaSe/n-InSe van der Waals heterostructures. Nanotechnology, 28(27), 27LT01. DOI: 10.1088/1361-6528/aa749e.
Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., Yang, R. X., Walsh, A., & Kovalenko, M. V. (2015). Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters, 15(6), 3692–3696. DOI: 10.1021/nl5048779.
Baugher, B. W. H., Churchill, H. O. H., Yang, Y., & Jarillo-Herrero, P. (2014). Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature Nanotechnology, 9(4), 262–267. DOI: 10.1038/nnano.2014.25.
Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H., Lau, T., Lu, X., Zhu, C., Peng, H., Johnson, P. A., Leclerc, M., Cao, Y., Ulanski, J., Li, Y., & Zou, Y. (2019). Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule, 3(4), 1140–1151. DOI: 10.1016/j.joule.2019.01.004.
Varadwaj, A., Varadwaj, P. R., & Yamashita, K. (2017). Revealing the Chemistry between Band Gap and Binding Energy for Lead-/Tin-Based Trihalide Perovskite Solar Cell Semiconductors. ChemSusChem, 11(2), 449–463. DOI: 10.1002/cssc.201701653.
Wu, R., Tian, L., Li, H., Liu, H., Luo, J., Tian, X., Hua, Z., Wu, Y., & Fan, S. (2022). A selective methane gas sensor based on metal oxide semiconductor equipped with an on-chip microfilter. Sensors and Actuators B Chemical, 359, 131557. DOI: 10.1016/j.snb.2022.131557.
Hua, Z., Li, Y., Zeng, Y., & Wu, Y. (2017). A theoretical investigation of the power-law response of metal oxide semiconductor gas sensors Ι: Schottky barrier control. Sensors and Actuators B Chemical, 255, 1911–1919. DOI: 10.1016/j.snb.2017.08.206.
Han, C., Wang, F., Gao, C., Liu, P., Ding, Y., Zhang, S., & Yang, M. (2015). Transparent epoxy– ZnO/CdS nanocomposites with tunable UV and blue light-shielding capabilities. Journal of Materials Chemistry C, 3(19), 5065–5072. DOI: 10.1039/c4tc02880e.
Baimanova, R., Luo, F., & Yang, M. (2022). Preparation of Iron-Doped Titania Nanoparticles and Their UV-Blue Light-Shielding Capabilities in Polyurethane. Materials, 15(20), 7370. DOI: 10.3390/ma15207370.
Wang, B., Wang, X., Lu, L., Zhou, C., Xin, Z., Wang, J., Ke, X., Sheng, G., Yan, S., & Zou, Z. (2017). Oxygen-Vacancy-Activated CO2 Splitting over Amorphous Oxide Semiconductor Photocatalyst. ACS Catalysis, 8(1), 516–525. DOI: 10.1021/acscatal.7b02952.
Wu, G., & Xing, W. (2018). Fabrication of ternary visible-light-driven semiconductor photocatalyst and its effective photocatalytic performance. Materials Technology, 34(5), 292–300. DOI: 10.1080/10667857.2018.1553267.
Sinornate, W., & Chongsri, K. (2019). Preparation and Characterization of Ag-doped ZnO thin film deposited by sol-gel-based coating method. Thai Journal of Nanoscience and Nanotechnology, 4(1), 20–24. http://www.nano.kmitl.ac.th/tjnn/index.php/tjnn/article/view/35.
Ali, G. A., Emam-Ismail, M., El-Hagary, M., Shaaban, E., Moustafa, S., Amer, M., & Shaban, H. (2021). Optical and microstructural characterization of nanocrystalline Cu doped ZnO diluted magnetic semiconductor thin film for optoelectronic applications. Optical Materials, 119, 111312. DOI: 10.1016/j.optmat.2021.111312.
Hu, H., Xiong, Z., Kang, C., Cui, Y., & Chen, L. (2022). Hydroxyl-functionalized ZnO monolayers for optoelectronic devices: Atomic structures and electronic properties. Vacuum, 208, 111721. DOI: 10.1016/j.vacuum.2022.111721.
Bouaine, A., Bourebia, A., Guendouz, H., & Riane, Z. (2018). Synthesis and characterization of In doped ZnO thin film as efficient transparent conducting oxide candidate. Optik, 166, 317–322. DOI: 10.1016/j.ijleo.2018.04.017.
Liu, H., Li, H., Tao, J., Liu, J., Yang, J., Li, J., Song, J., Ren, J., Wang, M., Yang, S., Song, X., & Wang, Y. (2023). Single Crystalline Transparent Conducting F, Al, and Ga Co-Doped ZnO Thin Films with High Photoelectrical Performance. ACS Applied Materials & Interfaces, 15(18), 22195– 22203. DOI: 10.1021/acsami.2c22784.
Rodlamul, P., Tamura, S., & Imanaka, N. (2019). Effect of p- or n-Type Semiconductor on CO Sensing Performance of Catalytic Combustion-Type CO Gas Sensor with CeO -ZrO -ZnO Based Catalyst. Bulletin of the Chemical Society of Japan, 92(3), 585–591. DOI: 10.1246/bcsj.20180284.
Han, T., Bak, S., Kim, S., Lee, S. H., Han, Y., & Yi, M. (2021). Decoration of CuO NWs Gas Sensor with ZnO NPs for Improving NO2 Sensing Characteristics. Sensors, 21(6), 2103. DOI: 10.3390/s21062103.
Minami, T., Miyata, T., & Nishi, Y. (2014). Cu O-based heterojunction solar cells with an Al2-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure. Solar Energy, 105, 206– 217. DOI: 10.1016/j.solener.2014.03.036.
Tubtimtae, A., Arthayakul, K., Teekwang, B., Hongsith, K., & Choopun, S. (2013). MnTe semiconductor-sensitized boron-doped TiO2 and ZnO photoelectrodes for solar cell applications. Journal of Colloid and Interface Science, 405, 78–84. DOI: 10.1016/j.jcis.2013.05.038.
Zhou, X., Xu, J., Shi, S., Chen, J., Xu, J., Kong, L., Zhang, X., & Li, L. (2023). Self-powered dual- wavelength polarization-sensitive photodetectors based on ZnO/BiFeO3 heterojunction. Applied Surface Science, 623, 157032. DOI: 10.1016/j.apsusc.2023.157032.
Saha, R., Dalapati, G. K., Chakrabarti, S., Karmakar, A., & Chattopadhyay, S. (2022). Yttrium (Y) doped ZnO nanowire/p-Si heterojunction devices for efficient self-powered UV-sensing applications. Vacuum, 202, 111214. DOI: 10.1016/j.vacuum.2022.111214.
Oliveira, D. A., Da Silva, R. A., Orlandi, M. O., & Siqueira, J. R. (2022). Supercapacitor Based on Nanostructured Multilayer Films Consisting of Polyelectrolyte/Graphene Oxide‐MnO2‐ZnO for Energy Storage Applications. Physica Status Solidi (A) Applications and Materials Science, 219(23). DOI: 10.1002/pssa.202100871.
Dangsaart, B., Boonyarattanakalin, K., Bangbai, C., Sungthong, A., & Chongsri, K. (2024). Enhanced optical and photocatalytic properties of Ag NPs decorated-ZnO composites. Thai Journal of Nanoscience and Nanotechnology, 9(2), 1–10. https://ph05.tci-thaijo.org/index.php/ TJNN/article/view/142.
Nayan, M. B., Jagadish, K., Abhilash, M. R., Namratha, K., & Srikantaswamy, S. (2019). Comparative Study on the Effects of Surface Area, Conduction Band and Valence Band Positions on the Photocatalytic Activity of ZnO-MxOy Heterostructures. Journal of Water Resource and Protection, 11(03), 357–370. DOI: 10.4236/jwarp.2019.113021.
Abhivyakti, N., Kaur, P., Aggarwal, D., Nitansh, N., & Singhal, S. (2025). Defect-engineered C,N- ZnO/CoO/CoFeO/FeO for ultra-fast tetracycline degradation and environmental impact assessment using an in silico mathematical model. Advanced Composites and Hybrid Materials, 8(1). DOI: 10.1007/s42114-025-01230-3.
Tang, C., Chen, C., Zhang, H., Zhang, J., & Li, Z. (2020). Enhancement of degradation for nitrogen doped zinc oxide to degrade methylene blue. Physica B Condensed Matter, 583(43), 412029. DOI: 10.1016/j.physb.2020.412029.
Mandor, H., Amin, N. K., Abdelwahab, O., & El-Ashtoukhy, E. Z. (2022). Preparation and characterization of N-doped ZnO and N-doped TiO2 beads for photocatalytic degradation of phenol and ammonia. Environmental Science and Pollution Research, 29(37), 56845–56862. DOI: 10.1007/s11356-022-19421-6.
Russo, M., Iervolino, G., & Vaiano, V. (2021). W-Doped ZnO photocatalyst for the degradation of glyphosate in aqueous solution. Catalysts, 11(2), 234. DOI: 10.3390/catal11020234.
Moafi, H. F., Zanjanchi, M. A., & Shojaie, A. F. (2013). Tungsten-doped ZnO nanocomposite: Synthesis, characterization, and highly active photocatalyst toward dye photodegradation. Materials Chemistry and Physics, 139(2–3), 856–864. DOI: 10.1016/j.matchemphys.2013.02.044.
Munna, N., Abdur, R., Islam, R., Bashar, M. S., Farhad, S. F. U., Kamruzzaman, M., Aziz, S., Shaikh, M. a. A., Hossain, M., & Jamal, M. S. (2023). Influence of Sn doping on the optoelectronic properties of ZnO nanoparticles. Nanoscale Advances, 5(18), 4996–5004. DOI: 10.1039/d3na 00409k.
Ghica, D., Vlaicu, I. D., Stefan, M., Maraloiu, V. A., Joita, A. C., & Ghica, C. (2019). Tailoring the dopant distribution in ZnO:Mn Nanocrystals. Scientific Reports, 9(1). DOI: 10.1038/s41598- 019-43388-z.
Abebe, B., Gupta, N. K., & Tsegaye, D. (2024). A critical mini-review on doping and heterojunction formation in ZnO-based catalysts. RSC Advances, 14(25), 17338–17349. DOI: 10.1039/d4ra02568g.
Pal, U., Kim, C. W., Jadhav, N. A., & Kang, Y. S. (2009). Ultrasound-Assisted Synthesis of Mesoporous ZnO Nanostructures of Different Porosities. The Journal of Physical Chemistry C, 113(33), 14676–14680. DOI: 10.1021/jp904377n.
Yurdakal, S., Garlisi, C., Özcan, L., Bellardita, M., & Palmisano, G. (2019). (Photo)catalyst Characterization Techniques: Adsorption Isotherms and BET, SEM, FTIR, UV–Vis, Photoluminescence, and Electrochemical Characterizations. In Marcì, G., & Palmisano, L. (Eds), Heterogeneous Photocatalysis (pp. 87–152). Elsevier. DOI: 10.1016/b978-0-444-64015-4.00004- 3.
Verma, G., Islam, M., & Gupta, A. (2025). ZnO nanowire-decorated 3D printed pyrolytic carbon for solar light–driven photocatalytic degradation of wastewater contaminants. Advanced Composites and Hybrid Materials, 8(1). DOI: 10.1007/s42114-024-01125-9.
Selvam, N. C. S., Vijaya, J. J., & Kennedy, L. J. (2012). Effects of morphology and ZR doping on structural, optical, and photocatalytic properties of ZnO nanostructures. Industrial & Engineering Chemistry Research, 51(50), 16333–16345. DOI: 10.1021/ie3016945.
Ghazal, S., Mirzaee, M., & Darroudi, M. (2024). Role of Zinc-doped Tungsten Oxide Nanosheets in Photo-catalytic, Anti-Cancer, and antibacterial Applications. Environmental Technology & Innovation, 36, 103908. DOI: 10.1016/j.eti.2024.103908.
Han, D., Du, M., Dai, C., Sun, D., & Chen, S. (2017). Influence of defects and dopants on the photovoltaic performance of Bi2S3 : first-principles insights. Journal of Materials Chemistry A, 5(13), 6200–6210. DOI: 10.1039/c6ta10377d.