Enhanced optical and photocatalytic properties of Ag NPs decorated-ZnO composites

Main Article Content

Burachat Dangsaart
Kanokthip Boonyarattanakalin
Chatpong Bangbai
Apichart Sungthong
Krisana Chongsri

Abstract

The goal of this work is to synthesize and study composites of silver and zinc oxide nanoparticles for improved ZnO light absorption by the aggregation of Ag nanoparticles prepared by a simple process. Starting with the synthesis of silver nanoparticles from silver nitrate (Silver Nitrate; AgNO3 ), the concentration of the synthesis of silver nanoparticles and zinc oxide composites was changed to 0.2%, 0.6%, and 1.0%. Initially, the amount of silver nanoparticles of 0.2%, 0.6%, and 1.0 % per 3 g of zinc oxide was carried out to determine the amount of silver nanoparticles suitable for important properties. Morphological analysis was performed using scanning electron microscopy (SEM). The crystal structure was analyzed by X-ray diffraction. The study on absorbance using the diffuse reflectance UVvisible spectroscopy technique and the photocatalytic efficiency was assessed by the decomposition of organic dyes under visible light. The analysis revealed that the silver nanoparticles and zinc oxide composites were morphologically cuboid and rod-shaped. As for the crystal structure, it was found to be hexagonal. The absorbance of composite materials is lower than that of pure zinc oxide in the 405600 nm range. Silver nanoparticles will enhance light absorption in composite materials due to their favorable surface plasmon resonance characteristics. This enhances composite materials' optical absorption. The breakdown of organic dyes under visible light was used to measure the photocatalytic efficiency, and it was discovered that the best photocatalytic properties were obtained with Ag NPs 0.2% per 3 g of ZnO.

Article Details

How to Cite
1.
Dangsaart B, Boonyarattanakalin K, Bangbai C, Sungthong A, Chongsri K. Enhanced optical and photocatalytic properties of Ag NPs decorated-ZnO composites. Thai J. Nanosci. Nanotechnol. [internet]. 2024 Dec. 31 [cited 2025 Jan. 30];9(2). available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/142
Section
Research Articles

References

Yang, P., Xu, Y., Chen, L., Wang, X., Mao, B., Xie, Z., Wang, S.-D., Bao, F., & Zhang, Q. (2015).Encapsulated silver nanoparticles can be directly converted to silver nanoshell in the gas phase. Nano letters, 15(12), 8397-8401. DOI:10.1021/acs.nanolett.5b04328.

Kang, W. J., Cheng, C. Q., Li, Z., Feng, Y., Shen, G. R., & Du, X. W. (2019). Ultrafine Ag nanoparticles as active catalyst for electrocatalytic hydrogen production. ChemCatChem, 11(24), 5976-5981. DOI: 10.1002/cctc.201901364.

Yang, S.-e., Liu, P., Zhang, Y.-j., Guo, Q.-N., & Chen, Y.-s. (2016). Effects of silver nanoparticles size and shape on light scattering. Optik, 127(14), 5722-5728.

N. C. F. B. (2024). PubChem Compound Summary for CID 3007857, Zinc Oxide. Retrieved December 15, from https://pubchem.ncbi.nlm.nih.gov/compound/Zinc-Oxide.

Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S. J., & Morkoç. (2005). A comprehensive review of ZnO materials and devices. Journal of applied physics, 98(4). DOI:10.1063/1.1992666.

Basnet, P., Chanu, T. I., Samanta, D., & Chatterjee, S. (2018). A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. Journal of Photochemistry and Photobiology B: Biology, 183, 201-221. DOI:10.1016/j.jphotobiol. 2018.04.036.

Majumder, S., Chatterjee, S., Basnet, P., & Mukherjee, J. (2020). ZnO based nanomaterials for photocatalytic degradation of aqueous pharmaceutical waste solutions–A contemporary review. Environmental Nanotechnology, Monitoring & Management, 14, 100386. DOI:10.1016/j.enmm. 2020.100386.

Battez, A. H., González, R., Viesca, J. L., Fernández, J. E., Fernández, J. M. D., Machado, A., Chou, R., & Riba, J. (2008). CuO, ZrO 2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 265(3-4), 422-428. DOI:10.1016/j.wear.2007.11.013.

Ziashahabi, A., Prato, M., Dang, Z., Poursalehi, R., & Naseri, N. (2019). The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark. Scientific Reports, 9(1), 11839. DOI:10.1038/s41598-01948075-7.

Burgess, C., & Frost, T. (1999). Standards and best practice in absorption spectrometry. Blackwell Publishing.

Valente, J. P. S., Padilha, P. M., & Florentino, A. O. (2006). Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2 . Chemosphere, 64(7), 1128-1133. DOI:10.1016/j.chemosphere.2005.11.050.

Shahwan, T., Üzüm, Ç., Eroğlu, A. E., & Lieberwirth, I. (2010). Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions. Applied Clay Science, 47(3), 257-262. DOI:10.1016/j.clay.2009.10.019.

Alharthi, F. A., Alghamdi, A. A., Al-Zaqri, N., Alanazi, H. S., Alsyahi, A. A., Marghany, A. E., & Ahmad, N. (2020). Facile one-pot green synthesis of Ag–ZnO Nanocomposites using potato peeland their Ag concentration dependent photocatalytic properties. Scientific Reports, 10(1), 20229. DOI:10.1038/s41598-020-77426-y.

Abutalib, M. M., & Rajeh, A. (2020). Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical and electrical properties of PAM/PEO composite. Physica B: Condensed Matter, 578, 411796. DOI:10.1016/j.physb.2019.411796.

Dlugosz, O., & Banach, M. (2021). Continuous synthesis of photocatalytic nanoparticles of pure ZnO and ZnO modified with metal nanoparticles. Journal of Nanostructure in Chemistry, 11(4), 601-618. DOI:10.1007/s40097-021-00387-9.

Thang, N. Q., Sabbah, A., Chen, L.-C., Chen, K.-H., Hai, L. V., Thi, C. M., & Viet, P. V. (2021). Localized surface plasmonic resonance role of silver nanoparticles in the enhancement of longchain hydrocarbons of the CO2 reduction over Ag-gC3 N4 /ZnO nanorods photocatalysts. Chemical Engineering Science, 229, 116049. DOI:10.1016/j.ces.2020.116049.

Han, Z., Ren, L., Cui, Z., Chen, C., Pan, H., & Chen, J. (2012). Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance. Applied Catalysis B: Environmental, 126, 298-305. DOI:10.1016/j.apcatb.2012.07.002.

Martínez-Castañon, G.-A., Nino-Martinez, N., Martinez-Gutierrez, F., Martínez-Mendoza, J. R., & Ruiz, F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of nanoparticle research, 10, 1343-1348. DOI:10.1007/s11051-008-9428-6.

Amirjani, A., Firouzi, F., & Haghshenas, D. F. (2020). Predicting the size of silver nanoparticles from their optical properties. Plasmonics, 15, 1077-1082. DOI:10.1007/s11468-020-01121-x.

Yaqoob, A. A., Umar, K., & Ibrahim, M. N. M. (2020). Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Applied Nanoscience, 10(5), 1369-1378. DOI:10.1007/s13204-020-01318-w.

Tian, C., Li, W., Pan, K., Zhang, Q., Tian, G., Zhou, W., & Fu, H. (2010). One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance. Journal of Solid State Chemistry, 183(11), 2720-2725. DOI:10.1016/j.jssc.2010.09.020.

Chauhan, R., Kumar, A., & Chaudhary, R. P. (2012). Photocatalytic studies of silver doped ZnO nanoparticles synthesized by chemical precipitation method. Journal of sol-gel science and technology, 63, 546-553. DOI:10.1007/s10971-012-2818-3.

Reddy, P. V., Reddy, S. V., & Reddy, B. S. (2016). Synthesis and properties of (Fe, Al) co-doped SnO 2 nanoparticles. Materials Today: Proceedings, 3(6), 1752-1761. DOI:10.1016/ j.matpr.2016.04.070.