Facile Synthesis of Zinc Oxide Nanorods Using a Single-Phase Flow with 3D Printed Device

Main Article Content

Pattharaporn Joongpun
Kitikamol Feemuchang
Korakot Onlaor
Thutiyaporn Thiwawong
Benchapol Tunhoo

Abstract

In this work, the single-phase flow chip was applied to synthesize ZnO nanomaterial. The facile process of synthesizing ZnO can be achieved through the printed single-flow chip with the Y-junction pattern. The flow chip was designed and printed with a stereolithography 3d printer. Then, the physical properties of prepared ZnO were performed with an X-ray diffractometer (XRD), Fourier Transform Infrared spectrometer (FTIR), scanning electron microscope (SEM), and UV-visible near-infrared spectrophotometer (UV-Vis-NIR), respectively. It was found that the prepared ZnO exhibited a hexagonal wurtzite structure with the morphologies of ZnO powders, showing the nanorod structure with rod length in micron size. The influence of precursor flow rate on the properties of ZnO nanorods was evaluated. The UV photodetector has been fabricated on a plastic print circuit board with an interdigitated electrode. The optimized sensitivity of the fabricated UV photodetector was investigated.

Article Details

How to Cite
1.
Joongpun P, Feemuchang K, Onlaor K, Thiwawong T, Tunhoo B. Facile Synthesis of Zinc Oxide Nanorods Using a Single-Phase Flow with 3D Printed Device. Thai J. Nanosci. Nanotechnol. [Internet]. 2024 Jun. 2 [cited 2024 Nov. 21];9(1):131. Available from: https://ph05.tci-thaijo.org/index.php/TJNN/article/view/131
Section
Research Articles

References

Hao, N., Zhang, M., & Zhang, J.X. (2020). Microfluidics for ZnO micro-/nanomaterials development: rational design, controllable synthesis, and on-chip bioapplications. Biomaterials Science, 8(7), 1783-1801. DOI:10.1039/c9bm01787a.

Franco, M.A., Conti, P.P., Andre, R.S., & Correa, D.S. (2022). A review on chemiresistive ZnO gas sensors. Sensors and Actuators Reports, 4, 100100. DOI:10.1016/j.snr.2022.100100.

Singh, V., & Singh, R. (2022). Simple synthesis of ZnO 3D-hierarchical nanostructures by microfluidics process. Journal of Materials Science: Materials in Electronics, 33(18), 14837-46. DOI: 10.1007/s10854-022-08403-6.

Shingange, K., Tshabalala, Z., Dhonge, B.P., Ntwaeaborwa, O.M., Motaung, D.E., & Mhlongo, G.H. (2017). 0D to 3D ZnO nanostructures and their luminescence, magnetic and sensing properties: Influence of pH and annealing. Materials Research Bulletin, 85, 52-63. DOI:10.1016/j.materresbull.2016.09.003.

Kang, Y., Yu, F., Zhang, L., Wang, W., Chen, L., & Li, Y. (2021). Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics, 360, 115544. DOI: 10.1016/j.ssi.2020.115544.

Krishnan, R., Shibu, S.N., Poelman, D., Badyal, A.K., Kunti, A.K., Swart, H.C., & Menon, S.G. (2022). Recent advances in microwave synthesis for photoluminescence and photocatalysis. Materials Today Communications, 32, 103890. DOI:10.1016/j.mtcomm.2022.103890.

Gimondi, S., Ferreira, H., Reis, R.L., & Neves, N.M. (2023). Microfluidic devices: a tool for nanoparticle synthesis and performance evaluation. ACS nano, 17(15), 14205-14228. DOI:10.1021/acsnano.3c01117.

Choi, C-H., Su, Y-W., & Chang, C-h. (2013). Effects of fluid flow on the growth and assembly of ZnO nanocrystals in a continuous flow microreactor. CrystEngComm, 15(17), 3326-3333. DOI:10.1039/C3CE26699K.

Anžlovar, A., Orel, Z.C., Kogej, K., & Žigon, M. (2012). Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly (methyl methacrylate). Journal of Nanomaterials, 31(1), 31. DOI: 10.1155/2012/760872.

Zhang, H., Yang, D., Ma, X., Ji, Y., Xu, J., & Que, D. (2004). Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process. Nanotechnology, 15(5), 622. DOI:10.1088/0957-4484/15/5/037

Ahsanulhaq, Q., Kim, S., Kim, J., & Hahn, Y. (2008). Structural properties and growth mechanism of flower-like ZnO structures obtained by simple solution method. Materials Research Bulletin, 43(12), 3483-3489. DOI: 10.1016/j.materresbull.2008.01.021.

McPeak, K.M., & Baxter, J.B. (2009). ZnO nanowires grown by chemical bath deposition in a continuous flow microreactor. Crystal Growth and Design, 9(10), 4538-4545. DOI:10.1021/cg900551f.

Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., & Liu, R. (2014). Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific Reports, 4(1), 4596. DOI:10.1038/srep04596.

Yue-Hui, H., Yi-Chuan, C., Hai-Jun, X., Hao, G., Wei-Hui, J., Fei, H., & Wang, Y.X. (2010). Texture ZnO thin-films and their application as front electrode in solar cells. Engineering, 2(12), 973-978. DOI:10.4236/eng.2010.212124.

Azmi, Z.H., Mohd Aris, S.N., Abubakar, S., Sagadevan, S., Siburian, R., & Paiman, S. (2022). Effect of seed layer on the growth of zinc oxide nanowires by chemical bath deposition method. Coatings, 12(4), 474. DOI: 10.3390/coatings12040474.

Abdulrahman, A.F., Barzinjy, A.A., Hamad, S.M., Almessiere, M.A. (2021). Impact of radio frequency plasma power on the structure, crystallinity, dislocation density, and the energy band gap of ZnO nanostructure. ACS Omega, 6(47), 31605-31614. DOI:10.1021/acsomega.1c04105.

Alamdari, S., Sasani, G.M., Lee, C., Han, W., Park, H-H., Tafreshi, M.J., Afarideh, H., & Ara, M.H.M. (2020). Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Applied Sciences, 10(10), 3620. DOI:10.3390/app10103620.

Mohammed, F.K., Beh, K.P., Ramizy, A., Ahmed, N.M., Yam, F.K., & Hassan, Z. (2021). Improvement of Porous GaN-Based UV Photodetector with Graphene Cladding. Applied Sciences, 11(22), 10833. DOI:10.3390/app112210833.

Ahn, S.E., Lee, J.S., Kim, H., Kim, S., Kang, B.H., Kim, K.H., & Kim, G.T. (2004). Photoresponse of sol-gel-synthesized ZnO nanorods. Applied Physics Letters, 84(24), 5022-5024. DOI:10.1063/1.1763633.

Weng, W., Chang, S., Hsu, C., Hsueh, T., & Chang, S. (2009). A lateral ZnO nanowire photodetector prepared on glass substrate. Journal of The Electrochemical Society, 157(2), K30. DOI:10.1149/1.3264650

Boruah, B.D., Mukherjee, A., Sridhar, S., & Misra, A. (2015). Highly dense ZnO nanowires grown on graphene foam for ultraviolet photodetection. ACS Applied Materials & Interfaces, 7(19), 10606-10611. DOI:10.1021/acsami.5b02403.

Shaikh, S.K., Ganbavle, V.V., Inamdar, S.I., & Rajpure, K.Y. (2016). Multifunctional zinc oxide thin films for high-performance UV photodetectors and nitrogen dioxide gas sensors. RSC Advances, 6(31), 25641-25650. DOI:10.1039/C6RA01750A.

Lin, C-C., Chen, Y-W., Chiang, M-C., Lee, C-H., Tung, Y-L., & Chen, S-Y. (2009). Photoconductive Enhancement of Single-Layer Tin Oxide–Coated ZnO Nanowires. Journal of The Electrochemical Society, 157(2), H227. DOI:10.1149/1.3271100.