Smartphone-Based Refractive Index Sensor Utilizing Gold Nanorod-Coated CD Grating
Main Article Content
Abstract
The refractive index measurement device utilizing a gold nanorod (GNR)-coated CD grating and operated through a smartphone has been developed and successfully demonstrated. The GNRs were synthesized using the seed-mediated growth method, with varying amounts of silver nitrate, specifically tailored for refractive index sensing applications. Due to their anisotropic shapes, GNRs exhibit two absorption peaks associated with localized surface plasmon resonance (LSPR). This study showcased the LSPR absorption sensitivity of GNRs to changes in solution refractive index. Solutions with diverse refractive index values were prepared and measured using the GNR-coated CD grating as the sensing material and a smartphone as the detector. The observed adsorption changes correlated directly with the refractive index of the solutions. Notably, the synthesized GNR-coated CD grating demonstrated a high sensitivity of 557.76 Green Intensity/RIU. Remarkably, this setup eliminates the need for traditional optical components such as lenses, filters, or apertures, relying solely on the smartphone's LED flash and camera. This work highlights the potential for portable, real-time, cost-effective, and easily deployable refractive index sensing devices.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Su, W., Luo, Y., Ding, Y., & Wu, J. (2021). Low-cost surface plasmon resonance refractive index sensor based on the metal grating in DVD-ROM disc. Sensors and Actuators A: Physical, 330, 112858. DOI:10.1016/j.sna.2021.112858.
Yang, A., Wang, D., Wang, W., & Odom, T. W. (2017). Coherent light sources at the nanoscale. Annual Review of Physical Chemistry, 68, 83-99. DOI:10.1146/annurev-physchem052516-050730.
Cao, J., Galbraith, E. K., Sun, T., & Grattan, K. T. V. (2011). Comparison of surface plasmon resonance and localized surface plasmon resonance-based optical fibre sensors. Journal of physics: Conference series, 307(1), 012050. DOI:10.1088/1742-6596/307/1/012050.
Pellas, V., Hu, D., Mazouzi, Y., Mimoun, Y., Blanchard, J., Guibert, C., Salmain, M., & Boujday, S. (2020). Gold nanorods for LSPR biosensing: synthesis, coating by silica, and bioanalytical applications. Biosensors, 10(10), 146. DOI: 10.3390/bios10100146.
Pang, R., Zhu, Q., Wei, J., Wang, Y., Xu, F., Meng, X., & Wang, Z. (2021). Development of a gold-nanorod-based lateral flow immunoassay for a fast and dual-modal detection of C-reactive protein in clinical plasma samples. RSC advances, 11(45), 28388-28394. DOI:10.1039/D1RA04404D.
Nikoobakht, B., & El-Sayed, M. A. (2003). Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chemistry of materials, 15(10), 1957-1962. DOI:10.1021/cm020732l.
Wang, Y., Liu, X., Chen, P., Tran, N. T., Zhang, J., Chia, W. S., Boujday, S., & Liedberg, B. (2016). Smartphone spectrometer for colorimetric biosensing. Analyst, 141(11), 3233-3238. DOI:10.1039/C5AN02508G.
Angulo Barrios, C. (2022). Smartphone-based refractive index optosensing platform using a DVD grating. Sensors, 22(3), 903. DOI:10.3390/s22030903.
Singh, G. P., & Sardana, N. (2022). Smartphone-based surface plasmon resonance sensors: A review. Plasmonics, 17(5), 1869-1888. DOI:10.1007/s11468-022-01672-1.
Ferreira, T., & Rasband, W. (2,2012, 10). ImageJ User Guide. Imagej.net. https://imagej.net/ij/docs/guide/146.html.
Almora-Barrios, N., Novell-Leruth, G., Whiting, P., Liz-Marzan, L. M., & Lopez, N. (2014). Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods. Nano letters, 14(2), 871-875. DOI:10.1021/nl404661u.
Orendorff, C. J., & Murphy, C. J. (2006). Quantitation of metal content in the silver-assisted growth of gold nanorods. The Journal of Physical Chemistry B, 110(9), 3990-3994. DOI:10.1021/jp0570972.
Eustis, S., & El-Sayed, M. A. (2006). Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum. Journal of Applied Physics, 100(4). DOI:10.1063/1.2244520.
Vigderman, L., Khanal, B. P., & Zubarev, E. R. (2012). Functional gold nanorods: synthesis, self‐assembly, and sensing applications. Advanced materials, 24(36), 4811-4841. DOI:10.1002/adma.201201690.