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Abstract  

The zirconium nitride (ZrN) thin films were successfully deposited by the DC reactive 

magnetron sputtering without heat treatment for the hard-coating applications. The ZrN thin 

films were carefully prepared at 200 nm under different operating pressures. The obtained 

films were systematically analyzed for physical, electrical, and optical properties, and 

discussed to the operating pressures. For the crystal structures, the XRD results indicated that 

most ZrN films were cubic close-packed structure with (111) and (220) orientations. Only the 

film prepared at the smallest operating pressure showed three phases of (111), (200), and (220) 

according to the localized heating from high atomic energy. For the film morphologies, the 

FE-SEM results demonstrated the increase of densely packed structure and the decrease of the 

surface roughness for the films prepared at low operating pressures. The film resistivity was 

found closely related to the electron scattering in the grain boundaries, as well as with the 

thin-film brightness. The optical properties of the films were determined from the reflection, 

lightness, and yellowness, as observed in the CIE chromaticity diagrams. 
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1. Introduction 

With the constant developments of the industrial and consumer machinery, surface 

treatment technology is a significant method to improve the durability of components, tools, 

molds, and machine parts, which have been used in mechanical, electronic, optical and 

decorative applications. One of the major interests in the surface treatment is metal nitrides 

because they appear in a gold-like color and are generally used in both the hard and decorative 

coatings. The metal nitrides are usually prepared with the fourth-column (IV) transition 

metals, i.e., titanium (Ti), hafnium (Hf), and zirconium (Zr), because of excellence in 

hardness, young's modulus, and tribological interactions [1-2]. Among these metal nitrides, 

zirconium nitride (ZrN) is one of the most attractive because of its excellent chemical and 

physical properties [3]. Also, ZrN demonstrates unique characteristics, i.e., high hardness up 

to 23.5 GPa [4], high optical reflection up to 80% in the infrared region [5], the visual color 

of light-yellowness [6], low resistivity of ρ≈13.6 μΩ∙cm at 300 K [7], and applicable as 

Josephson junctions and diffusion barriers [8]. In addition, ZrN has a high melting point at 

2,980 °C, and high thermal stability of ∆H = -87.3 kcal mole-1 [9]. 
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To utilize ZrN material in both hard-coating and decorative applications, ZrN thin films 

are widely studied. Numerous techniques that have been reported include chemical vapor 

deposition (CVD) [10], pulse laser deposition [11], ion-beam assisted deposition [12], and 

hollow cathode discharge ion planting (HCP-IP) [13]. One of the most widely studied 

deposition process to prepare the ZrN films is physical vapor deposition (PVD), especially a 

pulsed dc magnetron sputtering, which can be easily adapted to large-area coatings. The 

sputtering technique, generally performed with a Zr target in argon and nitrogen gases, can 

effectively control the thin film properties from the deposition conditions. Unfortunately, 

without an external substrate heating and negative substrate bias, as-deposited ZrN thin films 

are mostly amorphous because the Zr-N system contains phases such as Zr3N4 that can be 

amorphous [5, 14-16]. To promote film crystallinity, the ZrN films need high-temperature 

post-annealing treatment, substrate heating, or negative substrate bias during the film 

deposition [17-20]. Until recently, few groups have successfully fabricated high-quality ZrN 

thin films without the substrate heating or the negative substrate bias for the desired material 

properties [21-23]. Their technique has been known as a low-temperature crystalline 

deposition, which is of particular interest in most thin-film industries. With such a technique, 

they can reduce production costs when minimum requirements for substrates with high-

temperature tolerance are needed. 

In this work, we, therefore, examined the growth of crystalline ZrN thin films on the 

unheated substrates towards the decorative applications. The influence of the operating 

pressure on several characteristics, i.e., the structural, the morphological, the optical, and the 

electrical resistivity of the reactively sputtered ZrN films were thoroughly investigated and 

discussed. 

2. Experimental details 

 The crystalline ZrN thin films were prepared, without any heat treatment, by the pulsed 

DC reactive magnetron sputtering (AJA International, Inc.; ATC 2000-F) at the ambient 

temperature. At 80-mm distance (Ds-t) from the substrate holder, the sputtering cathode was 

tilted at an inclined angle of 40o to the substrate normal to obtain the most optimal film 

uniformity without biaxial alignment [24]. In this study, identical ZrN films were fabricated 

on two types of substrates for different purposes, i.e., silicon (100) with a native oxide and 

glass slide substrates were used for thin-film characterizations. All the substrates were 

sequentially cleaned in the ultrasonic washer with acetone, isopropanol, and deionized water, 

and then dried in a nitrogen atmosphere. After being loaded into the deposition chamber, the 

substrates were cleaned by argon ion plasma for 15 minutes, with an RF power of 30 W at an 

operating pressure of 0.67 Pa, in order to remove surface contamination. In addition, the Zr 

target was also pre-sputtered in the argon plasma to remove an excessive oxide surface layer. 

When the base pressure of the chamber reached 1.33×10-5 Pa, high purity argon (99.999 %) 

and nitrogen (99.999 %) were supplied as sputtering and reactive gases, respectively. 

Controlled with mass-flow meters (MKS), the flow rates of argon and nitrogen were kept 

constant at 20 and 2.0 sccm, respectively. For this sputtering system, such choice of gas flow 

rates was best optimized for the deposition rate and the quality of the ZrN films, while 

avoiding poisoning effects. During the film deposition, a two-inch diameter Zr (99.995 %) 

target (K.J. Lesker) was sputtered with the pulsed DC frequency at 20 kHz. The sputtering 

discharge was then generated at a constant DC pulse power of 400 W. The operating pressures, 

automatically controlled with a pressure control gate valve, were monitored with Pirani, 

Baraton, and Penning gauges. Table 1 gives a summary of the film deposition conditions. 
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Table 1. Deposition parameters for preparation ZrN thin films by dc reactive magnetron sputtering. 

Deposition Parameter 

Target material Zr (99.995 %) 

Substrate Silicon (100), glass slide 

Ar flow rate 20 sccm 

N2 flow rate 2 sccm 

Based pressure 1.33×10-5 Pa 

Operating pressure 0.13-2.0 Pa 

DC power 400 W 

Film thickness 200 nm 

Deposition rate 23.5-28.0 nm/min 

Deposition time 7-9 min 

The obtained ZrN thin films on the silicon and glass substrates were examined for physical, 

morphological, electrical, and optical properties. First, crystalline structures of the ZrN films 

were determined by grazing incidence X-ray diffraction (GIXRD; RIGAKU TTRAX III) 

operated with a Cu-K1 source at a grazing incidence of 0.4º and measured at 2º of 30-60º. 

Next, the cross-sectional and surface morphologies of the films were investigated with field-

emission scanning electron microscopy (FE-SEM; Hitachi S-4700). Then, an electrical 

resistivity was measured by a four-point probe method (Jandel RM3). Color measurements 

were then performed with HunterLab ColorQuest with an integrating sphere. Colorimetry was 

carried out under the CIE-L*a*b* method, where L*, a*, and b* represented brilliance, red–

green, and blue - yellow coloration, respectively.   

 
3. Results and discussion 

In general, the thin films for the hard-coating applications depend mostly on the 

crystallinity of the materials. In this study, the ZrN thin films were reactively sputtered at 

different operating pressures, whose effects on the crystal orientations of ZrN have been 

investigated. Fig. 1 shows the GIXRD patterns of the ZrN thin films deposited on the silicon 

wafers substrate at the operating pressure ranging from 0.13 to 2.0 Pa. Although from the 

figure, the XRD intensities depended heavily on the operating pressure during the film 

deposition, all of the ZrN thin films exhibited a cubic close-packed structure (NaCl-type, 

ICDD PDF #35-0753) with the (111) and (220) orientations. When the operating pressure was 

decreased from 2.0 to 0.40 Pa, the XRD peaks of the (111) and (220) planes were constantly 

increased as a result of higher crystallization in the ZrN films. Such ZrN crystallization can 

be explained from induced energy sources during the deposition. Although the ZrN films 

prepared without an external bias and a substrate heating are typical of amorphous or Zr3N4 

cubic phase [5, 9, 15], two possible approaches to crystallize the ZrN films are (i) the increased 

energy of particles impinging on the film surface and (ii) the thermal energy induced by the 

localized substrate heating [25-27]. When the operating pressure was further decreased to  
0.13 Pa, however, the ZrN film instead exhibited a decrease of (111), and a slight increase of 

(220) crystal orientations. In addition, a (200) crystal orientations not present in the other 

samples were now observed. The characteristic (200) peak represented the stable plane, which 

occurred thermodynamically from the minimal surface energy. A small fraction of the (200) 

orientation indicated that ZrN grains could have been formed during the secondary nucleation 

because of growth-induced defects. Another possible mechanism was a change in growth 
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kinetics, which caused a more effective collision dissociation of N2 molecules or N2+ ions, 

providing a higher N coverage in favor of the (200) texture [28, 29]. 

 

Fig. 1. The XRD patterns of the ZrN thin films, prepared at different operating pressures. 

 

Fig. 2. The surface-topological and cross-sectional FE-SEM images of the ZrN thin films prepared at 

different operating pressures: (a) 0.13, (b) 0.40, (c) 0.67, and (d) 2.0 Pa. 
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The effect of the operating pressure during the deposition to the film morphologies of the 

ZrN thin films on a silicon wafer substrate was investigated with FE-SEM (Fig. 2). The cross-

sectional FE-SEM images revealed the ZrN films with a columnar structure, which was 

consistent with zone T in the structure-zone model [30-31]. The images also confirmed nearly 

identical film thickness without a significant change in the columnar structures. Further 

examinations however indicated the change in density of the thin films, especially at the 

highest operating pressure when open boundaries between columns were observed. The 

increase in the open boundaries could be well explained from the small energy of the sputtered 

particles arriving at the substrates, because of the increased number of the scattering particles 

at that pressure. The lower the energy of the sputtered atoms arriving at the substrates, the 

smaller the mobility in the growing films, which would demonstrate higher film porosity. 

The physical surface of the ZrN thin film on silicon wafer substrates was examined by the 

AFM in the tapping mode. The root means square (RMS) roughness was calculated and 

plotted, as shown in Fig. 3. The minimum RMS roughness was observed at the lowest 

operating pressure which greatly affected the particles' kinetic energy. The maximum 

roughness was observed at the moderate operating pressure of 0.93-1.33 Pa. At such pressures, 

the decreased energy of the adatoms consequently lowered their capability to move on the 

surface of the substrates, which resulted in roughened surface morphologies. Nevertheless, 

the RMS roughness only varied between 2.4 to 5.0 nm, which was nearly insignificant as also 

observed from the corresponding AFM images. 

 

Fig. 3. The RMS roughness of the ZrN thin films measured as a function of the operating pressure.  
The insets represented the AFM images of the corresponding ZrN thin films. 
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Fig. 4. The resistivity of the ZrN thin films as function of the operating pressure during the film 

deposition. 

The effect of the operating pressure during the ZrN film deposition to the electrical 

resistivity was shown in Fig. 4. At the highest operating pressure, the ZrN film on glass slide 

substrate, with the smallest grain size, yielded the largest resistivity at 2.8×105 μΩ·cm. When 

the operating pressure was decreased from 2.0 to 0.40 Pa, the resistivity was logarithmically 

decreased with the increased grain size. The relation was the result of the decrease of electron 

scattering in the grain boundaries [17, 19, 32, 33]. The smallest operating pressure of 0.13 Pa, 

the resistivity was further decreased when the grain size was instead decreased. Such a result 

was the effect of the ion kinetic energy which was continuously increased due to the increased 

crystallinity of the ZrN thin films, similar to other publications [15, 17]. 

Fig. 5 shows the photograph of the ZrN film deposited on a glass slide substrate at different 

operating pressure. The film color became the light gold to the brown color with increasing 

operating pressure. The chromaticity of the fabricated ZrN thin films was measured by the 

colorimeter and converted to the CIE L*a*b*. Because this work also aimed at the decorative 

coatings, the values of L* and b* were of much interest. In Fig. 6(a), the plots of CIE L*a*b* 

indicated that, towards the lowest pressure, both the L* and b* were largely increased to 70 

and 25, respectively, while a* was slightly decreased toward 0. The results corresponded to 

direct inspections of the samples whose brightness and yellowness yielded light-gold color. 

This was the nature of the nitrides associated with the increase of the crystallographic ZrN 

structure. In Fig. 6(b), the CIE L*a*b* was converted to CIE xyz and plotted as the tritimulus 

diagram. From the figure, when the operating pressure was continuously decreased, we clearly 

observed nearly linear transition from light violet color towards brown, and eventually to 

light-gold color. Such a change in the chromaticity could be explained from the Drude’s model 

for the electronic transition within the films, where the reflectivity of materials and the 

complex refractive index were related to the number of free d electrons [6, 15, 34].   
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Fig. 5. Photograph of the ZrN thin films deposited on a glass substrate at different operating pressure 

 

Fig. 6. The chromaticity of the ZrN thin films: (a) CIE L*a*b*, and (b) CIE xyz 
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to the electron scattering in the grain boundaries of the obtained films. Such electrical 

properties were eventually related to the optical properties, as observed from the reflection, 

lightness, and yellowness in the CIE chromaticity diagrams.   
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