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Myanmar Spelling Error Classification: An Empirical Study
of Tsetlin Machine Techniques

Ei Thandar Phyu, Ye Kyaw Thu, Thazin Myint Oo, Hutchatai Chanlekha, and Thepchai Supnithi

Abstract— Accurate spelling and grammar checking is fundamental to the development of language
tools for Myanmar language. Classifying spelling error types is crucial in spell checkers and other
language processing tools because it enables more accurate and context-aware error corrections. This
process categorizes spelling errors in written text into distinct types or categories. To address the lack of
such resources for Myanmar language, we have developed a spelling corpus containing misspelled words
alongside their corrected forms in a parallel structure, paired with a corpus categorizing types of spelling
errors. This paper focuses on an observational study of Tsetlin Machine for Myanmar spelling error type
classification, involving comprehensive parameter tuning and a performance comparison with fastText,
a state-of-the-art natural language processing model. Our studies indicate that while Tsetlin Machine
achieves comparable results to fastText specifically in the domain of phonetic error classification, it
demonstrates lower efficacy in other error classes.

Index Terms—Spelling error type classification, Spell checker, Tsetlin Machine, fastText, Natural

Language Processing, Myanmar Language.

I. INTRODUCTION

HE number of users on Facebook, X, Instagram, and

other social media sites has significantly increased
recently. As of January 2023, around 15 million people
in Myanmar were active on social media, making up
about 27.6% of the total population. Valuable knowledge
and content, including users’ opinions and reviews, are
typically found in social media text. However, when de-
veloping natural language processing (NLP) models for
analyzing or mining such knowledge, we commonly en-
counter challenges arising from misspelling. Social text and
conversations often include many spelling errors, informal
language, and lack of professionalism which can cause
miscommunication and reduced credibility in the case of
academic or business writing. They also introduce the
challenges to NLP techniques in terms of accuracy and
processing time. Spell checkers have been used to ensure
the quality of written content and improve the quality of
user-generated text.

Through the analysis of Myanmar spelling errors that
are typically found on social media platforms, we defined
the error patterns into ten categories. We found out that
most common error types are phonetic errors (occurrence
of 38.73%) and typographic errors (occurrence of 35.14%)
followed by the combination of phonetic and typographic
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error (occurrence of 7.61%) and consonant error (occur-
rence of 6.12%). Other types are sequence error, slang
error, stack word error, sensitive word error, short-form
error, encoding error and dialect error. To handle these
error patterns which can involve both real-word or non-
word errors, it is important to understand the type of
spelling errors to improve the NLP applications such as
spell checker, automated proofreading and so on.

Spelling error type classification is the process of cate-
gorizing the misspelled words into specific types, each of
which indicate a different nature of mistake. By detecting
and categorizing the misspelled words into distinct types,
specific spelling correction algorithms can be employed for
each error category to suggest or automatically correct the
misspelled word. This study on spelling error classification
allows us to systematically identify and understand the
patterns and variations in the spelling mistakes. This
research aims to distinguish between common errors, and
gain insights into the specific types of spelling errors
present in our developing error-correction parallel corpus.

Tsetlin Machine (TM) [1] represents a pattern recogni-
tion methodology that prioritizes interpretability in the
field of machine learning (ML). The transparent decision-
making process inherent in TM facilitates a clear under-
standing of the rationale behind specific classifications,
rendering them a promising avenue for the development
of interpretable Al. This quality aligns with the growing
demand for transparency and explainability in artificial
intelligence systems. In this paper, we explored the prop-
erties of TM in the field of NLP, specifically focusing on
their efficacy in the context of Myanmar spelling error type
classification.

The Myanmar spelling error-correction parallel corpus,
collected by Ei Phyu Phyu Mon et al. [2] [3], is ex-
tended for the purpose of developing a large-scale parallel
Myanmar spelling error-correction corpus. The spelling
error type corpus is created through the extraction of
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the error types from developing spelling error-correction
parallel corpus. We presented the use of TM for spelling
error type classification and compared its performance to
fastText [4] library, which is widely recognized for its
effectiveness in various language-related tasks. fastText
is a reliable reference model, facilitating a meaningful
evaluation of TM’s performance in the context of spelling
error type classification. By contrasting the performance
of these two methods, this research aims to analyze the
respective strengths and weaknesses of TM with the goal
of identifying areas for improvement and advancing the
understanding of its applicability in Myanmar spelling
error type classification tasks.

II. RELATED WORK

Advancements in NLP research for the Myanmar lan-
guage have been notable. Numerous scholarly papers and
projects have surfaced, playing a crucial role in shaping
new datasets and language processing tools specifically
designed for Myanmar. These efforts have concentrated
on diverse aspects, including Myanmar XNLI [5], machine
translation [6], and tokenization [7]. Additionally, hate
speech detection has gained prominence in Myanmar,
prompting researchers to create annotated datasets and
explore ML algorithms [8]. Despite these strides, chal-
lenges remain—chiefly limited data resources and com-
putational costs—as NLP continues to evolve for the
Myanmar language.

Transformer-based models and Large Language Models
(LLM) represent the cutting edge in NLP techniques, find-
ing widespread application across various tasks—including
classification. These models, such as BERT [9], GPT-3
[10], and RoBERTa [11], leverage attention mechanisms
to capture complex relationships in data, making them
highly effective for tasks like text classification, sentiment
analysis, and more. fastText [4] is a popular classifier that
uses shallow neural networks to provide fast and efficient
text classification by representing words as vectors and
capturing their context in a given text. In recent years, TM
[1] has gained significant interest in the field of ML, par-
ticularly for its simplicity, interpretability, and efficiency
in classification tasks. Transformer-based models excel in
capturing complex patterns where large amounts of data
and computational resources are available. On the other
hand, TMs offer a lightweight alternative with clear inter-
pretability and lower resource requirements, making them
suitable for environments where computational efficiency
and model transparency are prioritized. There has been
research done in terms of exploring TM capabilities. Rupsa
Saha [12] proposed using TMs for Sentiment Analysis
and Semantic Relation Categorization, showing that the
patterns TMs find match expert-verified rules or lexicons
while keeping the results easy to understand without
losing accuracy compared to other ML techniques. Xuanyu
Zhang [13] introduced a TM-based method for Chinese
sentiment analysis and spam review detection that ensures
a transparent and easily understandable learning process.

The results indicate that this method outperformed com-
plex, non-transparent deep-learning models like BERT in
terms of accuracy and F1 scores.

The task of spelling checking for Myanmar language
remains particularly challenging, with development still in
its nascent stages. Existing published works on Myanmar
spelling correction typically involve two-stage systems that
rely on dictionary or rule-based approaches. Aye Myat
Mon et al. [14] introduced a Myanmar spell checker
utilizing a dictionary-based approach, which included a
compound misused word detection algorithm and a bigram
model designed to identify phonetic errors. Bayesian Clas-
sifier was employed for contextual errors, while typograph-
ical errors were addressed using a corpus lookup approach
with a syllable dictionary.

Ei Phyu Phyu Mon et al. [2] explored an automatic rule
extraction approach for Myanmar spelling checking. The
tool ‘wdiff” was utilized to compare two texts, and the
resulting patterns were converted into five error-correction
patterns. A total of 38,124 spelling correction rules were
extracted to address the errors. Nevertheless, this system
exhibited limitations in correcting phonetic and typo-
graphic errors, and out-of-vocabulary issues remained a
concern.

In further research, Ei Phyu Phyu Mon et al. [3] assessed
the efficacy of spelling checking by applying the Symmetric
Delete Spelling Correction Algorithm (SymSpell). Sym-
Spell [15] [16] supports Lookup () for single word spelling
correction, LookupCompound () for compound aware multi-
word correction and WordSegmentation() that inte-
grates both word segmentation and spelling correction.
LookupCompound () method enables compound-aware au-
tomatic spelling correction for multi-word input strings,
supporting compound splitting and decompounding by ad-
dressing various cases of space-related errors within correct
words. The findings suggested that the LookupCompound ()
method was not only faster but also provided better
correction quality than the WordSegmentation() method.
While this spell checker effectively addressed the combi-
nation of phonetic and typographic errors as well as typo-
graphical errors alone, it struggled with dialect, encoding,
short-form, and slang word errors.

III. METHODOLOGY
A. Tsetlin Machine

Tsetlin Machine is a general-purpose, interpretable,
and energy-efficient ML approach designed for classifica-
tion and decision-making processes. Introduced by Ole-
Christofer Granmo in 2018 [1], TM is notable for its reli-
able performance coupled with human-level interpretabil-
ity, striking a balance between effectiveness and inter-
pretability. It addresses complex pattern recognition chal-
lenges by employing propositional logic formulas, which
are constructed by a collective of Tsetlin Automata. A
Tsetlin Automaton (TA) is a finite-state automaton [17],
where the current state determines the action taken, and
rewards or penalties drive state transitions to reinforce
successful actions.
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Boolean feature inputs are used to take advantages such
as efficient storage, programming language compatibility
and ease of understanding for humans. TM breaks down
problems into self-contained patterns, each of which is
represented as conjunctive clauses in propositional logic. A
conjunctive clause can be considered as “if-then” rules and
is formed by using and-operator to combine the literals
denoted as [. These rules specify patterns in the binary
input data that are indicative of different types of spelling
errors. Input feature vector X = (z1,...,x;) of Boolean
features, where i is the dimension of features, is fed to n
multiple clauses. The feature vector X and their negated
counterparts form a literal set L = {x1,...,2;, Z1,...,%;}.
Half of the clauses in TM are given a positive polarity,
indicated by the upper index 1: C} and the remaining half
is given a negative polarity with the upper index 0: C?
where j € 1,2,..., 5. The clauses learned sub-patterns in
X as in Equation 1

Ci(X)= N I (1)

Lk EL]‘

The final output is computed through summation and
unit step thresholding, u(v) is 1 when v > 0 otherwise
u(v) is assigned to 0.

n/2 n/2

QZU(ZC}(X)*ZC?(X)) (2)

For example, considering XOR relation, § will be u(x122+
T1Tg — T1Ty — fl.fg).

In the case of multiclass TM, the threshold function of
each output y,7 € 1,2,...,m, is replaced by the argmax
operator as in Equation 3

n/2 n/2
Y= argmaxi:Lz...,m(Z C;’Z(X) - Z Cj(-)ﬂ(X)) (3)
j=1 j=1

TM inference structure is depicted in Figure 1. A clause
consists of a team of Tsetlin Automata, where each Tsetlin
Automaton determines whether to Include or Exclude a
specific literal in the clause based on reinforcement: Type
I feedback for frequent pattern generation and Type II
feedback for enhancing discrimination power within the
patterns. Type I feedback emphasizes the reinforcement
of the Include actions over Exclude actions. When TM
processes an input X and output y, the Type I feedback
is provided to the clauses C}’ when y = w. In the Type I
feedback, the likelihood of obtaining a reward is £=1. The
likelihood of taking no action is % and the probability of
incurring a penalty is 0. The hyper-parameter s (where
s > 1) controls how strongly we favour Include actions.
A higher s value stimulates Tsetlin Automata to incline
towards including literals more strongly in their clauses.

Type II feedback is applied to the clauses C}" when y #+
w. Type II feedback only triggers when y = 0 for positive
polarity clauses and y = 1 for negative polarity clauses.
This feedback is strong and generates candidate literals
that contribute to distinguishing between y = 0 and y = 1.

Both Type I Feedback and Type II Feedback interact to
minimize the expected output error, thereby converging
towards a global optimum. The probability of reinforcing
a clause gradually decreases to zero as the sum of clause
output, Z;Lfl CH(X) - Z?ﬁ C9(X), approaches a user-
defined target T'. When the voting sum equals or surpasses
the value of T indicating successful recognition of the input
by TM, no further reinforcement of clauses occurs.

Output
Threshold
Function
Summation
Conjunctive
Clauses
1 | ¥ -
Feature Vector = [X{, X2, ..., X] 7
BOW + Input
Text Input

Fig. 1: TM Inference Structure

B. fastText

fastText, developed by Facebook’s AI Research (FAIR)
team, is an efficient NLP library designed for text clas-
sification and representation. fastText embeddings [18]
utilize character n-grams to build word representations,
enabling words to be expressed as the sum of their n-
gram vectors. This approach extends the word2vec model
by incorporating subword information and employs a skip-
gram model during training to learn these embeddings. It
also allows for the computation of word representations
for out-of-vocabulary (OOV) words, due to its ability to
train rapidly on large-scale corpora. A word is represented
as a bag of character n-gram by adding special boundary
symbols ( and ) at the beginning and end of the word.
For example; if the word is “ 8{:’ (“City” in English) and
n = 3, the character trigrams will be <8, @, B, =, o> and

L L

the special sequence will be <[§{a>.

The foundational framework of fastText depends on the
implementation of the continuous bag of words (CBOW)
model, and a hierarchical classifier to optimize training
efficiency. fastText uses a hierarchical classifier, organizing
a large number of classes into a tree structure [4]. The n-
gram features are embedded and averaged to get the hid-
den variable. To enhance the processing speed, a hierarchi-
cal softmax layer [19] is constructed based on the Huffman
coding tree. The softmax activation function is used to
calculate the probability distribution over the predefined
classes. The probability of a given text with a particular
class is examined through a depth-first search along the
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nodes. Therefore, classes assigned by low probability can
be eliminated.

IV. SPELLING ERRORS OF MYANMAR LANGUAGE

The Myanmar language is tonal and comprises 33 con-
sonants, 12 basic vowels, 4 medials, and 7 independent
vowels. Each sound is represented as a syllable, which is
a combination of consonants, vowels, and medials. For
example, the word “o>” /sa/ (“Letter” in English) is
formed by combining the consonant ‘o’ and the vowel ‘0",

In the Myanmar language, a consonant shares a similar
phonetic sound with another consonant, such as ‘o’ /sa/
and ‘so’ /sMa/. Homophone errors can also occur when
words share a similar or identical pronunciation but have
different meanings and spellings. These errors can lead
to confusion in both spoken and written communication.
As an example, these four syllable ‘@’ /si/ (“Ride, Flow”
in English) , ‘s3s’ /s"{/ (“Urine” in English), ‘o)é:’ /si/
(“Line” in English), ‘aoé:’ /shi/ (“Save” in English) have
similar pronunciation but their meaning and usage within
word diverge.

Another common spelling error is caused by virama ‘&,
which removes the inherent vowel, resulting in a syllable-
final consonant. This typically occurs with the consonants
‘m’, ‘e, ‘o), ‘oo, ‘9 ‘oo’ ‘§’, ‘0, ‘e’, ‘o0’ and ‘o’ The
users usually confuse and make a mistake since some
combinations possess the similar phonemic characteristics.
For instance, co%: and coo: are pronounced identically as
J1an/.

In the context of the Myanmar language, the pronunci-
ation of words doesn’t always correspond directly to their
spelling. For instance, the word “:396[]@80’)0’8” (“Dawn” in
English) can be pronounced as /?o joun de?/ based on
its spelling. However, the word is pronounced as /?a jouN
de?/ by adding the vowel sound ‘sz’ /a/. The Myanmar
language has a large number of homonyms or pairs of
words that have the same phonetic or pronunciation which
can lead to the phonetic errors.

In Myanmar language, there are some consonants and
vowels that have a similar appearance such as ‘&’ (con-
sonant) and ‘p’ (independent vowels), ‘o’ (consonant) and
‘0’ (number zero), ‘q’ (consonant) and ‘9’ (number seven).
The users also confuse between these consonants and inde-
pendent vowels: ‘gt’, ‘q’, ‘S’, ‘e’, ‘%’ and ‘(a:’. Additionally,
users sometimes make errors by combining letters, vowels,
and symbols to create a shape that looks like a certain
letter. For example, typing (oo + [: — @) instead of ‘@’
where the users are required to type only U+1029 rather
than typing U+101E U+103C. The users may also write
a single letter instead of typing the correct combination.
For instance, the users sometimes write ‘g’ in place of (c
+ o — c) and vice versa.

Myanmar language also has the double stack words that
use conjunct consonants which are typed with two conso-
nants with the symbol ‘22" in the middle such as (oo+2+m
— g})) Some double-stacked words is created by placing
a superscript ‘%, called Kinzi, above the consonant (e.g.,

‘oo<?(E>G§’ which means “Sunday” in English). The stack
word errors commonly stem from incorrect arrangements
of consonants, such as placing two consonants vertically
or omitting a necessary lower consonant. For example,
the user types ‘8’ instead of typing ‘g’ and writes ‘ooé:’
instead of the correct word ‘ogé:’. The Myanmar Sign
Virama (‘2’) is essential for accurate rendering of stacked
words; its omission can result stack word errors (e.g.,
writing ‘309’ instead of ‘3m’). Another reason of the
stack word error is incorrect usage of ‘% instead of ‘*’
(e.g., typing ‘36030 instead of ‘326030?).

Some encoding mistakes can be encountered during the
process of converting Zawgyi to Unicode. Changing the
keyboard and altering the order of typing can also impact
the user, leading to errors in sequence or typography.
The invisible Unicode characters such as ‘zero width
space’, ‘zero width non-joiner’ or ‘zero width joiner’ can
be contained causing misspelled errors (e.g, “p5::”). Users
often utilize abbreviations, and specialized slang on social
media, which may deviate from the spelling rules and
result in instances of misspelling.

A. Myanmar Spelling Error Types

By studying and analyzing the Myanmar spelling
errors, ten different error types are proposed [2] [3]. In
our study, we categorize spelling errors into a single
level of categories, intentionally avoiding hierarchical
relationships or additional subdivisions based on aspects
such as orthography level, dictionary level, semantic
level, or social context. Moreover, the analysis emphasizes
errors that impact entire words, assessing whether the
chosen word is contextually appropriate or if another
word would be more suitable.

1) Consonant error (con)

Consonant error is an error when writing or typing the
wrong consonants which have the similar shape. It may
occur when the user does not know the correct spelling
or the user cannot find some consonant on the keyboard
layout leading to typing the similar character.

« Eg, @&D@ (“Problem” in English) — @OD(?’),

Sesalial

2) Dialect error (dialect)

Dialect error can occur from the influence of particularly
spoken varieties specific to certain administrative divisions
or ethnic groups of Myanmar. Often, these varieties exhibit
small discrepancies in pronunciation and vocabulary.

e E.g., (?)(YS@OZB%OS (“Wallet” in English) — 005023305.

3) Encoding error (encode)

Encoding error is a flaw that appears during the en-
coding process of text data, resulting in the generation of
characters that are not Myanmar consonants or medial.
This type of error is an unintended mistake and leads to
the generation of words that do not exist in the Myanmar
dictionary.
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« Eg, :Df?_P (“Math” in English) — aoqp1.

4) Phonetic error (pho)

Phonetic errors occur when words are written based on
their pronunciation rather than following the conventional
spelling rules. These errors have the potential to generate
real word mistakes, introducing ambiguity to the overall
content or meaning of the sentence.

e E.g., 000005 (“Concerned with” in English) —

0052005, VS, VAHAOS.

5) Sensitive error (sensitive)

Sensitive errors are deliberate mistakes that happen
when certain Myanmar characters are substituted with
English or special characters to avoid explicitly using
words that violate social community standards, such as
curse words and hate speech.

C . C C
e E.g., coom (abusive word) — $, S, s, coomm, caoom.

6) Sequence error (seq)

Sequence error may come out when the writer types the
wrong typing sequence of Myanmar syllables, which are
composed of consonants, medials, and vowels. For the word
“@)lz” (“Smile” in English) with the correct order (0 + [: +
&4 oo+ ¢33), misspelled word “E::-(:):” can be occurred if the
user types ([: + 0+ D+ o o).

e Eg., 39@ (“Amazing” in English) — 39@

7) Short-form error (short)

Short-form errors occur when people use unofficial ab-
breviations or write English characters which have the
similar pronunciation of Myanmar syllable. As an example,
the users write “zooo:” rather than “enodom:” /za? ka/
(“Movie” in English). When the word consist of two same
syllables consecutively, social media users omit the second
syllable and write “ 7 (“2” in English), “2”, or “double
quotation mark” in place of second syllable.

e E.g., @@ (“Finish” in English) — pp, p®:p.

8) Slang word error (slang)

Slang word errors consist of neologisms that differ from
the standard vocabulary. The widespread use of neolo-
gisms and slang words on social media can lead to language
standardization degradation and can result in potential
misunderstandings and communication problems.

« Eg, (7(15@ (“Brother” in English) — (rg

9) Stack word error (stack)

Stack word error occurs when the writer misuses the
double stack words. The causes of the stack word error are
writing two consonants up and down wrongly, misusing
one of the consonants, omitting the lower consonants,
forgetting to type the symbol -+’ (Myanmar Sign Virama)

) 457

C
and using ‘7 instead of “
e« Eg., eomaﬂ (“Hello” in English) — o6amdl.

10) Typographic error (typo)

Typographical errors are unintentional and arise from
simple mistakes such as pressing the wrong key, skipping
a character or inserting an unintended character. When
the user is writing in multiple languages, accidentally
switching the keyboards can cause the chance of typo
errors.

e E.g., Grrgjﬁoo&ﬂmofv (“Thank you” in English)

V. EXPERIMENTS
A. Myanmar Spelling Error Type Corpus

A well-designed and large-scale corpus is crucial for the
Myanmar NLP community to develop innovative solu-
tions and applications. We developed Myanmar spelling
error-correction parallel corpus which is an expansion of
the existing parallel corpus [2] [3]. The spelling error
text data are collected manually from news, blogs, posts
and comments on social media platforms (e.g., Facebook,
Telegram) and short conversational dialogues. The corpus
comprises erroneous sentences sourced from news out-
lets (e.g., Myanmar Now, BBC Burmese, Popular News
Journal), entertainment news platforms (e.g., Myanmar
Celebrity TV, Sunday Journal), as well as blogs related to
various categories including beauty, health, food, travel,
lifestyle, education and online business pages.

In our error-correction parallel corpus preparation, the
words identified as errors are annotated to their corre-
sponding correction following the rules and regulations
of the Myanmar orthography book published by Min-
istry of FEducation, Department of Myanmar Nationali-
ties’ Languages Myanmar Language Commission [20]. The
misspelled words are manually annotated according to
corresponding error types.

« Example: <o%|con> <Z:|sensitive>, <ooc |typo>,

<eqpem®\seq> and <C\)|ph0>

When a word falls into two error categories, it is tagged
as belonging to both with the symbol “-” after each class.

o Example: <§|pho-typo>, < G::.‘:::@:|slang—seq> and

<<;Gogf2::‘::.0(*f3\con—seq>.

The dataset comprises 57,880 sentence pairs. The fre-
quency of each error type is detailed in Figure 2. Sentences
containing errors are tagged with their respective error
types and are distinguished from the corrected sentences
by three pipes (|11), as illustrated below:

e\stack> B?<6 e[)é\seq> 32<®5|ph0>c;(\) mojxf?og
030|||<39qu> 39<eepc> 3 <30E>600: (‘OC\)C\)O’) o»
(“The color and the design of the shirt is beautiful” i
English)

We have built Myanmar spelling error type corpus from
the developing Myanmar spelling error-correction parallel
corpus with the intention of training classification systems
for spelling error types. We extracted the misspelled words
that are annotated with their corresponding error types
(eg., <eii_oolsensitive>) along with the adjacent syllables.
The syllable segmentation process was performed using
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Fig. 2: Statistic of Spelling Error Corpus

Myanmar syllable segmentation tool: sylbreak4all [21].
This corpus contains misspelled syllable sequences ranging
from 2-grams to 5-grams, accompanied by their corre-
sponding error types. The corpus size is 107,935 n-grams
syllable sequences and it is split into 90% for training the
model and 10% for testing. Some examples from the corpus
are shown below.

» ©6- _ 2 § ||| sensitive

C o C
. e[gom M2 Loz calé: ||| slang
o GO 2 qp: ||| short

B. Ezxperimental Settings

TM requires binary vectors or numerical matrices as
input representation to effectively learn patterns from
data. To meet the input requirements of TM, we adopted
the bag-of-words (BoW) approach. Our method involves
converting text data into vectors based on the word n-
grams. BoW model is straightforward and computation-
ally efficient, making it suitable for large-scale text pro-
cessing tasks. In this work, the task of converting text into
vectors is accomplished using CountVectorizer [22]. We
used character n-grams for vectorization, with a default
range of one to three characters and an alternative range
of one to four characters.

We tuned the parameters of TM such as clauses, T, s
and epochs. Clauses represent the number of clauses TM
will use to address the text learning process, comparable
to the number of hidden nodes in a neural network layer.
The T value sets the threshold, controlling how readily the
clauses are allocated to represent each specific sub-pattern.
Moreover, the s value is a crucial hyperparameter that
affects the learning dynamics of the model, particularly in-
fluencing the probabilities of Reward, and Penalty during
the learning process, as described in Section III. We em-
ployed a conventional TM model [23] for each experiment.
The model is configured with different clauses, and the
training proceeds for 100 complete iterations through the
training dataset. Within each of these iterations, we exper-
imented with different values for the ‘epochs’ parameter,
each value determined the number of internal parameter
updates for the model within a single pass through the

dataset during the training of TM. The parameters T and
s play a crucial role in shaping the behavior of TM for
multiclass classification tasks. We conducted experiments
to assess the impact of varying T values and s values on
the model training process.

The spelling error type classification task using TM is
compared with the fastText library, developed by Face-
book’s AI Research team. The Myanmar spelling error
type corpus was transformed into a specified format suit-
able for input into the fastText classifier, as fastText
requires the labeled dataset to be in a specific format
__label__<label_name> <text>. The model was trained
with the supervised classification technique within the
fastText framework, with a learning rate of 0.1 and soft-
max function. We studied the performance of the model
by tuning the training epoch, starting at epoch 10 and
increasing the epoch number by 10 until it reached 100.

VI. RESULTS AND DISCUSSION

A. Evaluation Metrics

To evaluate the performance of a multiclass classifica-
tion model, three measures of assessment: precision, recall
and Fl-measure. These metrics are essential for a compre-
hensive understanding of how well a model accomplishes
its intended task. Precision measures the accuracy of the
positive prediction for each class. Precision is computed
by adding up the total true positive predictions for all
classes and dividing it by the sum of true positives and
false positives across all classes. The formula of precision
is as follow:

True Positive

P . . — 4
recision True Positive 4+ False Positive W

Recall measures the count of positive class predictions
relative to all positive instances present in the dataset.
Recall is calculated as:

True Positive
Recall = 5
eea True Positive + False Negative (5)

F1 score provides a balanced evaluation of a model’s
performance and it is useful when there is an imbalance
between positive and negative instances in multiclass clas-
sification. The value of the metric has an interval of 0 to
1 and a value of 1 represents the optimal performance,
resulting in no false positive or false negative predictions.
The F1 score is calculated as in Equation 6.

2 - (Precision - Recall)
Precision + Recall

F1 Score = (6)

B. Result of Tsetlin Machine

We studied the performance of Myanmar spelling error
type classification using TM with the BoW model. We
experimented with a range of TM hyperparameters, in-
cluding the threshold for the summarization of the clauses
in TM (T value) and the parameter for the reward and
penalty strength during learning (s value).
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For BoW-based character n-grams vector representa-
tion, experiments were performed using two different n-
gram ranges, specified by the minimum and maximum
values: (1, 3) and (1, 4). TM parameters—number of
clauses, T value, s value, and the number of training
epochs for each invocation of the fit method in TM
model [23]—were set to 20, 15, 3.9, and 1, respectively. We
trained the model for 100 complete iterations through the
dataset. The experimental results for these configurations
are summarized in Table I, with the precision, recall, and
F1 score as evaluation metrics.

TABLE I: Performance Metrics for Spelling Error Type
Classification using TM with BoW model over Diverse N-
Gram Range Settings

TABLE III: Performance Metrics for Spelling Error Type
Classification using TM with BoW model across Varied
Parameter ‘s’

T s Precision | Recall | F1 score
15 | 3.9 0.58 0.55 0.54
15 5 0.56 0.53 0.52
15 8 0.55 0.44 0.46

ngram__range | Precision | Recall | F1 score
(1, 3) 0.58 0.55 0.54
(1, 4) 0.53 0.55 0.53

Next, we evaluate the impact of T to the performance
of the model trained with TM. In this experiment, we
considered three different T values: 10, 15, and 50. We
examined the impact of incrementing from 10 to 15, with
only a slight change in scores from the 5-unit increment.
Therefore, we opted to evaluate the model’s performance
using the value of 50. We used 20 clauses, the s value of
3.9, CountVectorizer’s ngram_range value of (1, 3), the
epoch number of internal parameter updates in the fit
method of 1 and trained the model for 100 iterations.
Precision, recall and F1 score are presented in Table II.
By analyzing the scores, it was observed that T values
significantly influence the performance of our models.

TABLE II: Performance Metrics for Spelling Error Type
Classification using TM with BoW model throughout
Various ‘T’ Parameter Settings

Through the selection of hyperparameters, including T
value of 15, s value of 3.9, and the number of clauses of
20, we conducted a training experiment with distinct inner
training epochs (fit_epochs). The model undergoes three
values of internal parameter updates within a single pass
through the dataset during the training of TM, including
1, 3, and 5. The results presented in Table IV demonstrate
that the number of inner training epochs for the fit
method has a significant impact on the performance of our
model. Specifically, the results indicate an improvement in
the F1 score, which increases from 0.54 (with 1 epoch)
to 0.58 (with 5 epochs), marking the highest F1 score
attained across all experiments.

TABLE 1IV: Performance Metrics for Spelling Error Type
Classification using TM with BoW model throughout
Different Inner Training Epochs

T s Epochs | Precision | Recall | F1 score
15 | 3.9 1 0.58 0.55 0.54
15 | 3.9 3 0.58 0.56 0.56
15 | 3.9 5 0.63 0.57 0.58

T s Precision | Recall | F1 score
10 | 3.9 0.56 0.56 0.54
15 | 3.9 0.58 0.55 0.54
50 | 3.9 0.54 0.52 0.52

In Table III, we present the precision, recall, and F1
score for spelling error type classification, considering
varying s parameter values. During this experiment, we
configured the number of clauses to 20, established a T
value of 15, initialized the epoch parameter in the fit ()
method of TM model to 1 and used ngram_ range value
of (1, 3). We referenced the s value of 3.9 which is used
in NosiyXOR and Sentiment Analysis experiments, 5.0
in Breast Cancer Demo, and IMDB Text Categoriza-
tion Demo and 8 in text classification for 20 Newsgroup
Dataset. When adjusting the parameter s in our model,
we found that lower s values, such as 3.9 and 5, achieved
higher scores than higher s value of 8. Through analysis,
s value had an impact on the performance of the model
and lower s value can give the best results indicating a
harmonious trade-off between precision and recall.

We examined the model’s performance using varying
numbers of clauses, specifically 20, 100, 200, and 300. Our
approach involved utilizing a s value of 3.9, setting the
fit-epoch parameter to 5, and experimenting with T val-
ues of 15 and 50. Due to time limitations and constraints
on computing resources, the experiments were limited to
30 iterations for training the model. Table V presents the
performance metrics for the top three optimal parameter
configurations involving the number of clauses and the T
values. The results suggest that increasing the number of
clauses is beneficial since there is more information to be
learned. Additionally, adjusting the T value is crucial for
optimizing model performance, likely due to the increased
complexity of the task.

TABLE V: Performance Metrics for Spelling Error Type
Classification using TM with BoW model varying clauses
and T values

Clauses | T s Precision | Recall | F1 score
100 15 | 3.9 0.72 0.71 0.69
200 50 | 3.9 0.73 0.70 0.69
300 50 | 3.9 0.75 0.73 0.72

C. Result of fastText

We investigated the performance of the fastText mul-
ticlass classifier for spelling error type classification and
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we found that the precision, recall, and F1 score had a
consistent pattern over a range of training epochs from 10
to 100. Table VI shows precision, recall and F1 score for
best three epoch numbers: 20, 40, and 60. The similarities
in scores between the epochs indicate how early in the
training process the model was able to converge to a
stable state. The slight variation in the evaluation metrics
emphasize the model’s capacity to consistently provide
accurate and reliable classification of spelling error types.

TABLE VI: Performance Metrics for Spelling Error Type
Classification using fastText

Epochs | Precision | Recall | F1 score
20 0.842 0.781 0.810
40 0.841 0.780 0.809
60 0.840 0.779 0.808

D. Decision Information or Interpretability of Tsetlin
Machine

TM can learn different clauses for each class in a
multiclass classification task. Each clause represents the
conditions or patterns that the model has learned to
associate with a specific class. When a test word is input
into TM, the model evaluates the word against all the
clauses of all the classes to determine the most appropriate
class for that word. Within our experiment, each of the ten
classes, spanning from Class 0 to Class 9, is represented by
300 clauses. To provide insight into decision information of
TM, we will explore a few examples of clauses, as outlined
below:

Example:

1) Class 0 (__label___con) Clause 3: ¢ A 0 © A &
A= & A 0 /\—|uk A= - /\ﬂaooo A 730 /\w%
A=eol A= o A 0

2) Class 9 (_label_typo) Clause 11: 3

Example 1 represents the clause for Class 0, a class for
consonant spelling error type, which recognizes the misuse
of ‘0’ (consonant) as ‘o’ (number zero) as explained in
Section IV. This caluse has been learned from some sen-
tences such as od:<o|con> eoi?:&l%, cv:<ofcon> e@éee‘?,
(\?l):<o|con> ovoo:, which extracts training example: “__ la-
bel___con C\l) o ©”. Therefore, the rule is defined as when
if the testing word contains ‘-:::E:s’ and ‘o ©’, indicative with
consonant errors and does not contain other literals related
to other classes such as ‘o>’ for phonetic error and ‘co1’
for encoding error, it will classify as Class 0.

Example 2 designed to detect a frequent typographic
error ‘3p’, which is often mistyped as the word * 33 ™
has descrlbed the rule such that if the test input contains

7 it will categorize as Class 9, typographic error.

E. Comparative Analysis of Tsetlin Machine and fast-
Text

We conducted a comprehensive analysis of our optimal
model, utilizing classification with TM, text feature ex-

traction with BoW model, 300 clauses, an inner training
epoch value of 5, T of 50 and s of 3.9. The performance
of this model is compared with the one using fastText
classifier across various spelling error labels. According
to the results in Figure 3, TM has obtained higher or
comparable precision to fastText in certain classes. On
the other hand, recall is comparable for ‘pho’ and ‘typo’
which are the top two largest classes, while recall scores are
extremely low across most classes, as shown in Figure 4.

1.0 m fastText
Tsetlin Machine

0.8

Precision
o
(=)}

o
>

0.2

0.0-

con dialect encode pho sensitive seq short

Spelling Error Types

slang stack typo

Fig. 3: Precision for TM’s Classification with BoW model
and fastText’s Classification across Each Spelling Error
Type

- fastText
B Tsetlin Machine

Recall

short

con dialect encode

pho sensitive seq
Spelling Error Types

Fig. 4: Recall for TM’s Classification with BoW model and
fastText’s Classification across Each Spelling Error Type

slang stack typo

The results, depicted in Figure 5, underscore that TM
has achieved comparable performance to fastText in clas-
sifying phonetic errors. TM has the proficiency in iden-
tifying consonant error with the F1 score of 0.812 and
typographic error with the F1 score of 0.707. However,
the model encounters challenges in identifying specific
error labels such as ‘slang’ and ‘encode’. While achieving
remarkably high precision scores of 0.943 and 1 for the
categories ‘slang’ and ‘encode’, respectively, the corre-
sponding recall values are extremely low, resulting in lower
F1 scores of 0.345 and 0.255. TM and fastText exhibit
higher classification results for phonetic, typographic, and
consonant errors; although, both models struggle to iden-
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tify dialect errors. This may be attributed to the limited
number of error sequences for the dialect category, with
only a small number of instances, making it relatively
small compared to other categories. In Figure 6, we can
aslo observe that most of the error patterns are recognized
as ‘typo’ and ‘pho’ errors. The difference in performance
can be attributed to the disparate sizes of the training
datasets. Specifically, the number of instances for phonetic
errors and typographic errors significantly surpasses the
training data for other error categories.

. fastText
Hmm Tsetlin Machine

F1 score

con dialect encode pho sensitive seq short

Spelling Error Types

Fig. 5: F1 Scores for TM’s Classification with BoW model
and fastText’s Classification across Each Spelling Error

Type

slang stack typo

con 499 0 0 27 0O 4 0 0 5 145
3000
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pho 15 0 O EBEEEl 0 1 0 3 17 807
o N 2000
@senstive 0O O O 33 49 3 2 0 0 47
v
S seq 9 O O 14 0 241 0 2 6 207 — 1500
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shot O O 0 13 1 0 31 0 0 33
- 1000
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stack 3 0 0 36 0 0 0 88 89 - 500
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Fig. 6: Confusion Matrix for Spelling Error Type Classifi-
cation Using TM with optimal parameter settings

F. Discussion

Our experimental results showed that the choice of
T and s affected the performance of the spelling error
type classification model. The T parameter determines the
number of clauses required for a decision in the voting
mechanism; a larger T means more clauses participate in
the voting, thereby influencing the feedback to the Tsetlin
Automata states. According to the results by setting the

s value to 3 and number of clauses to 20, as presented
in Table II, lower T values lead to better performance
because they allow TM to make predictions with fewer
clauses agreeing, thereby increasing the model’s flexibility
and responsiveness to the data.

Moreover, the s parameter controls the specificity of
the clauses in TM by influencing how strongly we favor
Include actions. A higher s value stimulates the Tsetlin
Automata to more strongly include literals in their clauses,
which can capture finer details but may lead to overfitting.
Conversely, a lower s value results in more general clauses,
which can prevent overfitting but might miss important
details. According to the results as shown in Table III,
lower s values lead to better performance metrics. This is
because they allow TM to create more general clauses, in-
creasing the model’s ability to generalize from the training
data and improving its precision, recall, and F'1 score.

To better understand the capabilities of TM and to
examine the effect of error type imbalance in our dataset,
we conducted binary classification experiments using a
balanced dataset. This approach allows us to evaluate
whether TM can effectively distinguish between error
types when given an equal representation of each error
type. We selected samples from the ‘con’, ‘pho’ and ‘typo’
classes, each of which has more than 5,000 samples. The
samples from each selected class are defined as the positive
class, while randomly selected samples from remaining
classes serve as the negative class. We trained the model
for ‘con’ class with 6,000 syllable sequences for the positive
class and 6,000 for the negative class. In these experiments,
TM with the parameters (T — 50, s — 3, number of clauses —
300, fit-epoch - 5) achieved a comparable score to fastText
as illustrated in Table VII.

TABLE VII: Performance Metrics of Binary Classification
on the ‘con’ Class with Balanced Dataset

Precision | Recall | F1 score
fastText 0.97 0.97 0.97
™ 0.97 0.97 0.97

We also conducted the experiments for the ‘pho’ class
and ‘typo’ class and the experimental results are shown
in Table VIII and Table IX. According to the analysis of
the conducted experiments, we can improve the quality of
the system by using a balanced dataset. Imbalances can
lead the model to be biased towards the majority classes,
resulting in relatively higher performance for those cate-
gories. Incorporating these insights into the development
process can lead to a more effective and accurate spelling
error correction system.

TABLE VIIIL: Performance Metrics of Binary Classifica-
tion on the ‘pho’ Class with Balanced Dataset

Precision | Recall | F1 score
fastText 0.86 0.86 0.86
T™ 0.86 0.85 0.85
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TABLE IX: Performance Metrics of Binary Classification
on the ‘typo’ Class with Balanced Dataset

Precision | Recall | F1 score
fastText 0.84 0.84 0.84
™ 0.82 0.82 0.82

VII. CONCLUSION AND FUTURE WORK

The classification of Myanmar spelling errors using TM
and fastText represents a significant advancement in de-
veloping an effective Myanmar spelling checker. This study
introduces the first Myanmar spelling error type classifi-
cation using TM with BoW word representation method
and classification using fastText. We have constructed a
Myanmar spelling error type corpus containing 100k syl-
lable sequences across ten distinct classes for training and
testing the models. We analyzed the effects of the number
of clauses, T and s parameters on TM’s performance and
evaluated fastText’s classification capabilities over various
training epochs. We aim to publish our error type corpus
to further support the Myanmar NLP community. Fur-
thermore, our ongoing efforts are directed towards creating
a Myanmar spell checker that incorporates state-of-the-art
technologies, with the objective of enhancing its precision
and accuracy.
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