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Abstract— Personalized recommendation systems mine user preference, represent item feature and thus realize
recommendation by modeling user-item interaction. Because the interaction naturally forms the bipartite graph, Graph
Convolution Neural Networks are used to learn representation of nodes for recommendation recently. Current approaches,
however, seldom give recommendation results from causing factors. Furthermore, they may encounter over-smoothing
problem when addressing dense graphs and struggle to model sparse graphs. For alleviating these problems, this paper
proposes feature disentanglement and homogeneous second order feature propagation for recommendation. Features of
the users and items are disentangled into two parts resulting in the final ratings. Then we improve Neighborhood Routing
Algorithm via adding rating embedding so as to simultaneously learn the positive and negative effects of neighborhood
nodes on the central node. Finally, we apply similar homogeneous neighbors which are statistically-validated by Bipartite
Score Configuration Model to the second convolution for mitigating the problems happening on the dense graphs and
sparse graphs. Experimental results on two different scale real-world datasets demonstrate the effectiveness of the proposed
model.

Index Terms—Feature disentanglement, negative effects, homogeneous neighbors.

I. INTRODUCTION

RECOMMENDATION systems help users to find items
of interest by modeling user-item interection. Typically,

based on the interaction information traditional recommenda-
tion approaches utilize collaborative filtering [1], [2], content-
based filtering [3] or hybrid filtering [4] to present the tailored
items for the user. Recent years witness the development
of Graph Convolution Neural Network (GCN). The GCN
framework generates the node representation by aggregating
its neighborhood information with a local parameter-sharing
operator, and thus serves specific tasks, such as node classi-
fication, link prediction, etc. Based on user-item interaction
graph and Matrix Factorization (MF), Monti et al. propose
the first GCN-based approach for recommendation [5]. Since
then, some GCN-based recommendation approaches have been
emerging [6], [7]. In addition to users’ feedback, side informa-
tion, such as knowledge graph and social relationship, is used
to boost recommendation performance [8]. Wang et al. design
knowledge-aware path recurrent network, which generates
paths composed of entities and relations for user-item inter-
action inference [9]. Meta-path-guided heterogeneous Graph
Neural Networks leverage multi-hop meta-paths to learn com-
prehensive node embedding, which uncover the semantic and
structural information of heterogeneous networks [10], [11].
However, knowledge-based recommendation methods need
additional knowledge base, and need to extract multiple entity
relations and meta-paths in advance. Social recommendation
combines user-item interaction with social relation information
to learn node representations, which helps to understand user
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preference in term of social influence [12]. Typical meth-
ods realize social recommendation, including adding social
regularization constraint [13], adopting multi-layer feature
integration [14], [15]. Similarly, social relation information
is not available for many recommendation scenarios. If we
could learn similar users and similar items from the user-item
interaction graph, use the homogeneous neighborhood nodes
to further update the central node representation, which may
obtain similar effect to social recommendation.

Due to neural network powerful learning capability, current
GCN-based recommendation methods have greater perfor-
mance compared with traditional methods. But these methods
usually use one hop neighbors to obtain node representa-
tion, thus, have relatively poor performance when bipartite
graphs are sparse. Though DeepWalk could address sparse
problem in the random walk way[16], random walk in bipartite
graphs may add noise for long distance weak dependence.
For dense graphs, connectivity among nodes is strong, so
multiple convolutions based on one hop neighbors may make
representation of nodes in the same sub-connected graph
converge to a certain vector. This is the phenomenon of over-
smoothing. We propose homogeneous second order feature
propagation to make up aforementioned deficiencies. Specif-
ically, statistically-validated method, Bipartite Score Config-
uration Model (BISCM) is utilized to identify homogeneous
neighbors of the node instead of side information [17]. Then,
we use one hop neighbors to carry out the first convolution
operation, use homogeneous neighbors to conduct the second
convolution operation. Homogeneous second order feature
propagation supplements rich information from similar homo-
geneous neighborhood perspective, also helps to achieve di-
versity recommendation, avoids users falling into information
cocoon room as a result of focusing on individual inherent
history interests.

Some researchers assume there exists some factors caus-
ing user-item interaction, and propose recommendation ap-
proaches based on feature disentanglement or causing embed-
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ding [18], [19]. Inspired by the idea, we expect to use two
factors which cause user-item interaction to respectively rep-
resent user-item both sides. Concretely, feature of each node
contains two parts, the first part features of users reflect their
interest taste, and the first part features of items reflect their
characteristic. The second part features of items reflect their
popularity, and the second part features of users reflect the
popularity level of items loved by them. Once disentanglement
features are determined, we utilize improved Neighborhood
Routing Algorithm to aggregate neighborhood nodes. Original
Neighborhood Routing Algorithm selects positive neighbors
to update the central node representation, and neglects effects
of negative neighbors [20]. For rating bipartite graph, edges
are assigned different weights, hence, neighborhood nodes
have varying degrees of positive and negative effects on the
central node. When using one hop neighbors, this paper will
add rating embedding to Neighborhood Routing Algorithm in
order to learn positive and negative feedback of neighbors. To
summarize, this work has the following three contributions:
• We disentangle features of the users and items into two

parts resulting in the final ratings. Then we improve
Neighborhood Routing Algorithm via adding rating em-
bedding to learn the positive and negative effects of
neighborhood nodes on the central node.

• We apply similar homogeneous neighbors which are
identified using BISCM to the second convolution, which
helps to alleviate the over-smoothing problem of dense
graphs and the sparse connection problem of sparse
graphs.

• Experimental results on two different scale real-world
datasets demonstrate the effectiveness of the proposed
model.

II. RELATED WORK

In recent years, Graph Convolutional Neural Network has
been applied to recommendation systems to enhance the
recommendation performance. The first GCN-based recom-
mendation system combines with Matrix Factorization to
learn meaningful graph-structured patterns from user and item
graphs [5]. Berg et al. propose Graph Convolutional Matrix
Completion (GCMC) model [6]. Considering different labeled
edges, GCMC conducts differentiable one hop neighborhood
message aggregation on the user-item bipartite graph. Based
on GCMC, Zhang et al. develop Stacked and Reconstructed
Graph Convolutional Networks (STAR-GCN) architecture [7].
STAR-GCN masks node embeddings and reconstructs these
masked embeddings with a block of graph encoder-decoder to
address cold start problem. However, above methods seldom
mine multi-class structure information. By incorporating social
network information Ma et al. present a matrix factorization
recommendation framework with social regularization [13].
Fan et al. provide a graph neural network framework for
social recommendation [14]. The framework jointly models
user-item interaction graph and user-user social graph, at the
same time, captures the heterogeneous strengths of edges.
Although above methods consider user-item interaction rela-
tion and social relation to get rich semantics, social relation

is not available for many recommendation scenarios. Based
on co-occurrence commodity graph Li et al. conduct multi-
layer intention diffusion and aggregation process to mine
user intention [21]. Sun et al. employ Bayesian Graph Con-
volutional Neural Network to model the uncertainty in the
user-item interaction graph, and sample graphs are generated
with the node copying model [22]. Both works contribute
to solving user behavior sparse problem and interest weak
generalization problem due to considering relevance among
homogeneous nodes. But the relevance is not validated, and
thus may increase noise. According to the idea which any two
nodes sharing a statistically-significant number of neighbors
are similar, Saracco et al. propose Bipartite Configuration
Model (BICM) to obtain statistically-validated monopartite
projections of bipartite networks [23]. Edges are assigned
different weights in the user-item bipartite weight graph, and
the weights represent users’ reviews for corresponding items.
Considering the weights of edges, Becatti et al. propose Bipar-
tite Score Configuration Model to extend BICM to bipartite
weight graphs [17]. In this paper, we will adopt BISCM
to build similarity graphs about homogeneous nodes, and
exploit the statistically-validated similarity monopartite graphs
to the second convolution operation with the expectation of
addressing above limitations.

Ma et al. propose a novel Neighborhood Routing Algorithm
to learn disentanglement features of nodes [20]. The algorithm
is capable of identifying significant latent factors which cause
connection between the central node and one of its neigh-
bors. Hu et al. apply Neighborhood Routing Algorithm to
news recommendation circumstance, and introduce preference
regularization to boost feature disentanglement [18]. Zheng
et al. suppose that user interest and conformity two factors
cause user-item interaction [19]. They mine cause-specific
data, pair each positive sample with corresponding negative
samples, and then learn disentanglement features of nodes
through Bayesian Probabilistic Ranking (BPR) loss. Inspired
by the feature disentanglement idea, considering two causing
factors and neighborhood positive/negative effects this paper
adjusts Neighborhood Routing Algorithm to rating prediction
task on the bipartite rating graph.

III. PROPOSED MODEL

In this section, we build on the Neighborhood Routing
Algorithm to develop a novel approach which takes strengths
of edges into account and incorporates homogeneous second
order feature propagation for rating prediction. Firstly, we
learn node representation, then design loss function to train
the model.

A. Node Representation Learning

In this subsection, we focus on illustrating the learning
process of the user representation using improved Neighbor-
hood Routing Algorithm. Item representation can be learned
similarly, and it is not described here. The overall algorithm
flow is shown in Algorithm 1 and Algorithm 2.
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Algorithm 1 Improved Neighborhood Routing Algorithm: the
First Order Feature Propagation
Input: pi,k, qj,k, ei,j , k = 1, 2, j ∈ N(i);
Output: ui,k, k = 1, 2;

1: ui,k ← pi,k
2: for T iterations do
3: for j ∈ N(i) do
4: sj,k ← softmax(uTi,kqj,k), k = 1, 2

5: for k = 1, 2 do
6: ui,k ← Norm(pi,k +

∑
j∈N(i) ei,j � (sj,kqj,k))

7: return ui,k

Algorithm 2 Improved Neighborhood Routing Algorithm: the
Second Order Feature Propagation
Input: ui,k, uj,k, wi,j , k = 1, 2, j ∈ H(i);
Output: zi,k, k = 1, 2;

1: zi,k ← ui,k
2: for T iterations do
3: for j ∈ H(i) do
4: sj,k ← softmax(zTi,kuj,k), k = 1, 2

5: for k = 1, 2 do
6: zi,k ← Norm(ui,k +

∑
j∈H(i) wi,j(sj,kuj,k))

7: return zi,k

1) Computing the First Order Feature of the User
We assume that there are two factors that cause user-item

interaction. Namely, feature of each node contains two parts
which have the same dimension, the first part features of users
reflect their interest taste, and the first part features of items
reflect their characteristic. The second part features of items
reflect their popularity, and the second part features of users
reflect the popularity level of items loved by them. Formally,
Let pi, qj be initial embeddings of useri and itemj . They are
randomly initialized. When there is side information available
for users or items, according to information category, the
encoding feature could be filled into appropriate embedding
section. For example, if genres of items are available, we
express genres of the item as multi-hot vector, then linearly
project the sparse vector into the dense vector which is viewed
as qj,1, the first part initial embedding of itemj , and qj,2 is
embedded with random vector. It’s worth noting that for new
item, we could use learned side information representation to
give it more accuracy embedding for dealing with cold start
problem.

Given pi, we map the initial embedding using projection
matrix W1, and then disentangle the vector pi into two parts,
respectively normalize.

pi = ReLU(W1pi + b1), (1)

pi,1 = Norm(pi,1) =
pi,1
||pi,1||2

, (2)

pi,2 = Norm(pi,2). (3)

We can construct two kinds of normalized disentanglement
features of items in the same way.

qj = ReLU(W1qj + b1), (4)

qj,1 = Norm(qj,1), (5)

qj,2 = Norm(qj,2). (6)

Neighborhood Routing Algorithm infers the significant fac-
tor that mainly contributes to the final rating by computing
similarities of two interaction nodes under each kind of dis-
entanglement features [20]. The original algorithm just selects
positive neighborhood nodes to update the central node. If
viewing effects of positive nodes as positive feedback, then
negative nodes play a negative feedback role for representation
learning of the central node. Here, for the first order feature
propagation, we improve Neighborhood Routing Algorithm
by adding score embedding. Let N(i) denote useri’s fixed
number of neighbors. {qj,1|j ∈ N(i)} and {qj,2|j ∈ N(i)}
are normalized disentanglement feature sets of useri’s neigh-
borhood nodes. {ei,j |j ∈ N(i)} is score embedding set
between useri and its neighbors. There are six kinds of ratings,
including “0, 1, 2, 3, 4, 5”. “0” represents that the user does
not interact with the item, which is the padding item. The six
kinds of score embeddings are learned during training. The
first order feature of useri can be formalized as follows,

ui,1 = NR(pi,1, {qj,1|j ∈ N(i)}, {ei,j |j ∈ N(i)}), (7)

ui,2 = NR(pi,2, {qj,2|j ∈ N(i)}, {ei,j |j ∈ N(i)}). (8)

In detail, when executing t routing iteration, the similarity of
useri and itemj about feature k is

s
(t)
j,k =

exp(u
(t−1)T
i,k qj,k)∑2

k′=1 exp(u
(t−1)T
i,k′ qj,k′ )

, k = 1, 2. (9)

Then we exploit Eq. 10 to update feature k of useri after
t routing iteration. When aggregating information of each
neighbor, we not only multiply weight about the factor, but
also multiply score embedding ei,j . The score embeddings
allow the model to learn positive and negative effects of
neighbors on the central node. When finishing T iterations,
we obtain the first order feature of useri, [ui,1, ui,2].

u
(t)
i,k =

pi,k +
∑

j∈N(i) ei,j � (s
(t)
j,kqj,k)

||pi,k +
∑

j∈N(i) ei,j � (s
(t)
j,kqj,k)||2

, k = 1, 2. (10)

2) Computing the Second Order Feature of the User
The core of Graph Convolution Neural Network is how to

aggregate features from local neighbors using neural network.
To learn more accuracy node representations, GCN usually
performs the second even the third convolution operation.
However, when the graph is dense to some extent, deeper
repetitive iterative learning could not work because it causes
consistent representations of nodes in the same connected sub-
graph. Instead, when the user-item bipartite graph is sparse,
only using closer local heterogeneous neighbors to update the
central node representation could be insufficient. In addition,
only considering user-item interaction could make users fall
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into information cocoon room. That is because items which
are liked by the user could be very similar, then based on the
interaction history, the model may still recommend almost the
same items for the user. In other words, recommended items
are lack of diversity. Furthermore, when the user do not try
new types of items actively, he will fall into a self-enclosed
information cocoon room.

For the issues, this paper utilizes user-user similarity graph
and item-item similarity graph to supplement side informa-
tion from homogeneous neighbors. BISCM [17] provides a
statistically-verified method to identify similarity of homo-
geneous nodes, which ensures the reliability of similarity
relation. The core idea of BISCM is that any two nodes
having statistically enough the same high rating neighbors are
similar. As Fig. 1 shows, U, I respectively represent user set
and item set, dark read, light read, orange, light green, dark
green edges respectively represent “5, 4, 3, 2, 1”, then user1
and user2 maybe similar, item2 and item3 maybe similar
according to BISCM. Instead of using explicit homogeneous
graphs available, we construct the user-user graph and item-
item graph by BISCM to further conduct the second order
feature propagation.

Fig. 1. The bipartite rating graph.

For the second convolution, we leverage aggregation opera-
tion of original Neighborhood Routing Algorithm. The weight
of actual neighbor is 1, and the weight of padding neighbor is
0. Let H(i) denote useri fixed number of homogeneous neigh-
bors. {uj,1|j ∈ H(i)} and {uj,2|j ∈ H(i)} obtained according
to Algorithm 1 are the first order disentanglement feature
sets of useri’s homogeneous neighbors. {wi,j |j ∈ H(i)} is
corresponding weight set. The calculation process of useri’s
second order feature is as follows, and the detail is shown in
Algorithm 2. Through T iterations, the second order feature
of useri, [zi,1, zi,2] is obtained.

zi,1 = NR(ui,1, {uj,1|j ∈ H(i)}, {wi,j |j ∈ H(i)}), (11)

zi,2 = NR(ui,2, {uj,2|j ∈ H(i)}, {wi,j |j ∈ H(i)}). (12)

B. Model Training

1) Base Loss Function
We model the recommendation as a rating prediction task.

Note that xj,1 is the first part of itemj’s second order
feature, and xj,2 is the second part of itemj’s second order

feature. Then sti,j means similarity between taste of useri
and characteristic of itemj , and spi,j means commonality
between popularity level of items which are liked by useri
and the popularity of itemj . Both similarities contribute to
the final predicted rating r̂i,j . W and b in Eq. 15 are learnable
parameters.

sti,j = zTi,1xj,1, (13)

spi,j = zTi,2xj,2, (14)

r̂i,j = W (zTi xj) + b = W (sti,j + spi,j) + b. (15)

Once obtaining the predicted rating, combining with the
ground truth rating ri,j , we use Mean Square Error (MSE) to
express the base loss function L1, where O denotes training
set.

L1 =
1

|O|
∑

(useri,itemj)∈O

(ri,j − r̂i,j)2. (16)

2) Additional Loss Functions
We will set two additional loss functions to promote the

independence of two factors. In other words, we expect that
consistencies of the user and item about two aspects respec-
tively cause the final rating. One is likelihood loss function
about classification of disentanglement features. For two kinds
of disentanglement features of useri and itemj , we use a fully
connected layer containing parameters Wc and bc to predict
category distributions P (c|zi,k) and P (c|xj,k). Then based on
actual feature parts, including “1, 2”, we give loss function L2

to maximize corresponding likelihood.

P (c|zi,k) = softmax(Wczi,k + bc), k = 1, 2, (17)

P (c|xj,k) = softmax(Wcxj,k + bc), k = 1, 2, (18)

L2 = −
∑

ai∈{zu,xv|(useru,itemv)∈O}

∑
k=1,2

log(P (c|ai,k)[k]).

(19)
The other is margin loss function about two kinds of feature

similarities. For the sample (user, item), we define popularity
of the item as the number of rating records which the item has
when the user rates. And we view records in training set as
full space. For popularity/score, if qualitatively considering
relative values of numerator and denominator, there are four
kinds of value levels. We assume that if the user is interacting
with the popular item, he prefers popular items. It means his
second part feature is similar with that of high popularity
level items. In contrast, if the user is interacting with the
unpopular item, characteristic of the item may meet his taste.
In short, there exists one factor mainly causing the interaction
for the both circumstances. We use y = 1 to indicate
popularity/score < down threshold, that is popularity of
the item is low when the user interacts with it, but the user
gives high score. Then we expect two similarities sp and st

learned by the proposed model satisfy sp < st. In other words,
the high score is mainly due to consistency between taste of the
user and characteristic of the item. We use y = −1 to indicate
popularity/score > up threshold, that is popularity of the
item is high when the user interacts with it, but the user
gives low score. Then we expect the sp and si learned by
the proposed model satisfy sp > st. Namely, characteristic of
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the item does not match taste of the user. We utilize y = 0
to indicate other circumstances. The down threshold and
up threshold are respectively assigned with the first quartile
and the third quartile of the corresponding values of training
set.

We exploit margin loss function Lp to learn the above
inequality relations. For the sample (user, item) ∈ O, we
calculate (st, sp, y). Set O1 satisfies (st, sp, y) ∈ O1, and
y = ±1.

Lp =
1

|O1|
∑

(st,sp,y)∈O1

max(0,−y(st − sp)). (20)

3) Final Loss Function
The final loss function can be expressed as

L = (1− λ1 − λ2)L1 + λ1L2 + λ2Lp + η||Θ||2. (21)

where λ1, λ2 are balance coefficients, η is regularization
coefficient and Θ denotes all the trainable parameters.

IV. EXPERIMENTS

A. Datasets

This paper will use two different scale datasets to demon-
strate the effectiveness of the proposed model. One is Movie-
Lens 100K (ML-100K) dataset. The other is Douban dataset.
Douban dataset is selected from the initial Douban dataset1,
which is collected from https://www.douban.com/ in Septem-
ber 2019 by Liu et al. Movies are rated as “1, 2, 3, 4, 5”,
and we can optionally incorporate additional item information,
such as genres, publishing country, synopsis, release time,
actors, etc. There are 4 million 160 thousand rating records
in the initial dataset. Here, the items released after 2015 are
considered, and the items with less than 5 records will be
removed. Then we only consider the users who have more than
4 records. The statistics of the datasets is shown in Table I.
ML-100K dataset is denser. In contrast, Douban dataset is
sparser.

TABLE I
STATISTICS OF DATASETS

Dataset Users Items Ratings Density
ML-100K 943 1682 100000 0.0630
Douban 31922 10952 589534 0.0017

B. Experimental Setup

1) Experimental Setup for ML-100K Dataset
We conduct experiments on the first of the five provided

data splits with 20% records for testing, that is u1.base,
u1.test. There are 943 users, 1650 items in u1.base, and rating
distribution is 4719: 9178: 21963: 27396: 16744. Based on
u1.base, we construct the bipartite graph. We regard “4, 5” as
high scores, and use corresponding high score neighborhood
nodes to obtain user-user graph, item-item graph (parameter t
in BISCM is set to 0.05). 10% records of the training set are
randomly selected as the validation set.

1https://www.csuldw.com/2019/09/08/2019-09-08-moviedata-10m/

We set dropout to 0.5. The initial learning rate is set as
0.025, and gradually decreases to 0.001 with decay rate of 0.8
during training. Embedding dimension of nodes is 64 (32 for
each factor), and embedding dimension of scores is 32. We
set η = 10−4, λ1 = λ2 = 0.02. The number of routing is set
as 5, batch size is set as 256. The number of users’ heteroge-
neous neighbors is 20, the number of movies’ heterogeneous
neighbors is 10. The number of users’ homogeneous neighbors
is 10, and the number of movies’ homogeneous neighbors is
5. Numbers of neighbors are set according to about a quarter
of the average. And we address the label leakage problem by
setting rating of the target node in neighborhood nodes into
“0”.

2) Experimental Setup for Douban Dataset
For Douban dataset, rating records of 3481 users whose

rating records are after 2019 are extracted as the challenge
test set. In the remaining samples, for each user, we arrange
his rating records according to rating time, and the first 60%
samples are split as the training set, including 325285 rating
records, 28441 users, 10289 movies, and rating distribution is
45112: 66561: 118455: 71479: 23678. The training set is used
to construct the bipartite graph and calculate homogeneous
neighbors. The next 20% samples are used as the validation
set, and the final 20% samples are used as the test set.

The initial learning rate is set as 0.05, and gradually
decreases to 0.0004 with decay rate of 0.8 during training.
Embedding dimension of nodes is 128 (64 for each factor),
and embedding dimension of scores is 64. We set η = 10−5.
Batch size is set as 1024. The number of users’ heterogeneous
neighbors is 10, the number of movies’ heterogeneous neigh-
bors is 30. The number of users’ homogeneous neighbors is
30, and the number of movies’ homogeneous neighbors is 10.
Numbers of neighbors are set according to the average. Other
settings are same to ML-100K’s.

C. Discussion of Results

We evaluate the performance of the proposed model in
term of Root Mean Square Error (RMSE). Table II gives
experimental results on the two datasets. First order feature
propagation denotes there is one convolution operation using
heterogeneous neighbors. First order feature propagation with
movie genre embedding denotes that initial item embedding
contains genre information. Second order feature propaga-
tion with heterogeneous neighbors denotes that there are
two convolution operations using heterogeneous neighbors.
Homogeneous second order feature propagation is the model
that we propose, that is the first convolution operation uses
heterogeneous neighbors, and the second convolution oper-
ation uses homogeneous neighbors. sRMGCNN is proposed
by Monti et al, which utilizes geometric deep learning on
graph [5]. Homogeneous second order feature propagation has
better performance. When embedding genre, the model shows
advantage of feature disentanglement more. Compared to first
order feature propagation, second order feature propagation
with heterogeneous neighbors does not work, but homoge-
neous second order feature propagation improves prediction
performance for two kinds of bipartite graphs.
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TABLE II
COMPARISON OF TEST RMSE SCORES FOR DIFFERENT METHODS

Method ML-100K Douban
First Order Feature Propagation 0.9363 0.8696

First Order Feature Propagation with Movie Genre Embedding 0.9236 -
Second Order Feature Propagation with Heterogeneous Neighbors 0.9430 0.8722

Second Order Feature Propagation with Heterogeneous Neighbors and Movie Genre Embedding 0.9345 -
Homogeneous Second Order Feature Propagation 0.9299 0.8670

Homogeneous Second Order Feature Propagation with Movie Genre Embedding 0.9177 -
sRMGCNN 0.929 [5] -

TABLE III
COMPARISON AMONG THE PROPOSED MODEL VARIANTS

Method RMSE
First Order Feature Propagation 0.8696

First Order Feature Propagation w/o Likelihood Loss 0.8705
First Order Feature Propagation w/o Two Additional Losses 0.8725

First Order Feature Propagation w/o Two Additional Losses and Score Embedding 0.9321

D. Ablation Study

As the proposed model involves multiple novel components,
we conduct ablation experiments on Douban dataset to explore
the contribution of each component to the performance. The
results are shown in Table III. First order feature propagation
w/o likelihood loss denotes that we do not add likelihood loss
into the final loss function. First order feature propagation
w/o two additional losses and score embedding denotes that
we do not add two additional losses into the final loss
function, and we just use high score (“4, 5”) neighbors to
implement aggregation operation without score embedding.
The results illustrate that learning positive and negative effects
of neighbors on the central node is helpful for prediction, and
using the two additional losses improves the performance of
the model because they promote feature disentanglement.

E. Case Study

We randomly select 10 users and some of their homoge-
neous neighbors from ML-100k dataset. For each user, we
assemble non-repeating sample pairs using all items rated
by the user and part of items which are rated by the user’s
homogeneous neighbors. Next, we use homogeneous second
order feature propagation with movie genre embedding model
trained to predict ratings. Then, for each user, we respectively
calculate the sum of multi-hot genre vectors of real medium
and high score items (the corresponding score is greater than
2) and the sum of multi-hot genre vectors of predicted medium
and high score items. The heat maps are shown in Fig. 2 and
Fig. 3. Longitudinal “0-9” denote 10 users. Horizontal “0-
18” denote 19 kinds of genres, and “0” represents “unknown
genre”. The average number of genres per user is 13.6 in
Fig. 2, and the average number of genres per user is 14.2
in Fig. 3. Our model could recommend diversity items whose
genres are not limited to genres of history high score items.

V. CONCLUSIONS

In this paper, we propose the model which consists of
feature disentanglement and homogeneous second order fea-
ture propagation for recommendation. First, we disentangle

Fig. 2. The heat map about users and genres of real non-low score items.

Fig. 3. The heat map about users and genres of predicted non-low score
items.
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features of the users and items into two parts respectively
causing the final rating. Then, we add score embedding
into Neighbor Routing Algorithm to learn the positive and
negative effects of neighborhood nodes on the central node.
Last but not least, we use similar homogeneous neighbors
which are identified using BISCM for secondary convolution.
Homogeneous second order feature propagation alleviates the
over-smoothing issue of dense graphs, lack issue of the first
order neighbors of sparse graphs. Moreover, by means of
homogeneous neighbors, instead of only using one hop neigh-
bors, the model helps to achieve diversity recommendation.
Experiments are performed on two different scale real-world
datasets to demonstrate the effectiveness of the proposed
model.

Homogeneous second order feature propagation is not only
suitable for Neighborhood Routing Algorithm, but also maybe
appropriate for other GCNs. We will try to apply it to other
convolution operations. In the future, we will also give test
results on the Douban challenge test set (all users do not appear
in the training set) to further verify the model performance.
For side information, we will embed initial movie popularity
features using actor, movie popularity value information, and
supplement movie characteristic features using movie publish-
ing country, movie text description information.
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