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Abstract— Despite the widespread recognition of the necessity and importance of project risk management, its effective 
implementation is often difficult. Much of the difficulty could be explained by the effects of cognitive biases related to 
heuristics when humans make decisions about probability and frequency. In this study, we propose a machine-in-the-
loop process in which human and AI model cooperate in a complementary manner to mitigate the influence of cognitive 
bias in human decision-making and compensate for the lack of domain knowledge in prediction with the AI model. In a 
case study where the machine-in-the-loop process was applied to project risk management, we conducted an interview 
survey and confirmed the effectiveness of the machine-in-the-loop process with positive comments which support the 
reduction of uncertainty and cognitive bias.  

 
Index Terms—Artificial Intelligence, Machine Learning, Project Risk Management, Cognitive Bias, Dual System Theory. 

I. INTRODUCTION 
N recent years, companies are facing drastic changes in 

the surrounding environment with increasing uncertainty 
due to rapid technological progress in the Internet and AI 
(Artificial Intelligence), diversification of customer needs, 
etc. Under these circumstances, in order for companies to 
establish a sustainable competitive advantage, it is necessary 
to build the ability to flexibly adapt in response to the changes 
by further strengthening project risk management. However, 
despite the widespread recognition of the necessity and 
importance of project risk management, its effective 
implementation is often difficult. In many organizations, the 
process has become a skeleton and is not operated correctly, 
resulting in repeated failures such as risks that later manifest 
themselves as major problems. According to the results of a 
survey on the maturity level of project management, the 
maturity level of risk management is the lowest among the 
nine areas of project management, and is reported to be the 
bottleneck of the project [1] [2]. 

Much of the difficulties in project risk management could 
be explained by the effects of cognitive biases related to 
heuristics when humans make decisions about probability and 
frequency. To reduce the impact of cognitive biases in human 
decision making, the complementarity between human and 
AI model can be utilized. In this study, we propose a machine-
in-the-loop process in which human and AI model cooperate 
in a complementary manner. The AI model can help to 
mitigate the influence of cognitive bias in human decision-
making, whereas human can help to compensate for the lack 
of domain knowledge in prediction with the AI model. We 
have applied the machine-in-the-loop process to project risk 
management and examined its effectiveness through 
interviews with practitioners. 

This paper is organized as follows. In Section 2, we discuss 
the difficulties of project risk management. In Section 3, we 
propose a machine-in-the-loop process and its application to 
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project risk management. Section 4 presents a case study of 
the machine-in-the-loop process as applied to project risk 
management, and summarizes the results of the interview 
survey. In Section 5, we survey related studies. Finally, 
Section 6 presents the conclusions. 

II. DIFFICULTIES IN PROJECT RISK MANAGEMENT 
The goal of project risk management is to identify and 

control risks that may lead to project failure in the early 
phases of the project. A risk is defined as an event or 
condition whose occurrence is uncertain and, if it occurs, will 
have a detrimental effect on the project. In Project 
Management Body of Knowledge (PMBOK) [3], a guideline 
developed by Project Management Institute (PMI), project 
risk management is one of 10 knowledge areas in project 
management, along with project integration management, 
project scope management, project schedule management, 
project cost management, project quality management, 
project resource management, project communication 
management, project procurement management, and project 
stakeholder management. 

The risk management process is defined as follows [3]. 
 
Risk Management Planning. Define how to implement a 
risk management plan for a project. 
 
Risk Identification. Determine which tasks will impact the 
project and document their characteristics. 
 
Qualitative Analysis of Risks. Prioritize risks for subsequent 
analysis and action based on an assessment of their 
probability of occurrence and impact. 
 
Quantitative Analysis of Risks. Numerically analyze the 
impact of the identified risks on the overall project goals. 
 
Risk Response Planning. Develop options and measures to 
enhance opportunities and reduce threats to project goals. The 
risk response strategies include risk avoidance, risk transfer, 
risk mitigation, and risk acceptance. 
 
Implementing Risk Response Plans and Monitoring 
Risks. Implement the risk response plan, track the identified 
risks, and monitor the remaining risks. 
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Fig. 1.  A simplified decision-making model for project risk management. 
 

Project risk management is a part of project management, 
but it is very different from other types of management 
activities in that it deals with probabilistic events or 
conditions. Project risks always exist, but they are not always 
recognized from the beginning, and even if they are 
recognized, they are not always realized, and they do not 
always remain the same throughout the project. If the risk is 
deterministic and it is known from the beginning that it will 
occur, then dealing with the risk should be incorporated into 
the project as a task in advance, and risk management should 
not be necessary in the first place. Risk management is 
necessary because the occurrence of risk is probabilistic and 
involves uncertainty. The fact that a risk is a probabilistic 
event or condition means that trade-offs must be made in 
deciding how to respond to the risk, where a trade-off is a 
situation or relationship in which pursuing one means 
sacrificing the other. The decision-making model in its 
simplest form in project risk management can be represented 
by a decision tree as shown in Fig. 1 [4]. If a risk response 
plan is implemented, the expected gain will be 𝐸! = −𝐶 −
𝑃!𝐿!, where the cost of the risk response plan is C and the 
probability and the loss that the risk will be realized is 𝑃!and 
𝐿!, respectively. If a risk response plan is not implemented, 
the expected gain will be 𝐸" = −𝑃"𝐿", where the probability 
and the loss that the risk will be realized is  𝑃" and 𝐿" , 
respectively. If 𝐸! is higher than 𝐸", that is, 𝑃"𝐿" − 𝑃!𝐿! >
𝐶, the risk response plan should be reasonably implemented. 
However, it is not always possible to obtain the correct 
decision-making model in real projects. Part of the difficulty 
of project risk management can be explained by the difficulty 
of quantitative assessment of a risk. 

Even if a correct decision-making model of risk is 
obtained, humans do not always make rational decisions and 
act accordingly. Bannerman points out that there is a large gap 
between the theory and practice of risk management, and cites 
the influence of human factors as one of the reasons for this 
gap [5]. Kutsch and Hall investigated deliberate indifference 
in risk management and categorized it into the following four 
types [6]. 
 
Untopicality. Intentionally ignoring risks that do not match 
past experience or preferences based on the intuition of 
managers and others. 
 
Undecidability. Not being recognized as a risk by other 
stakeholders because the evidence for the risk is weak. 

Taboo. Socially enforced indifference, such as not being 
allowed to know or touch something. 
 
Suspension of Belief. Daring not to expend resources on a 
risk until it becomes apparent, hoping that the risk will resolve 
itself naturally. 
 

Human decision making under uncertainty can be 
explained by prospect theory [7]. Prospect theory assumes 
general heuristics that humans use when making judgments 
about probability and frequency, and explains that human 
responses to probability are not linear, i.e., biases arise from 
rational judgments. Typical heuristics include reference 
dependence and loss aversion. Reference dependence is the 
property that people make decisions based on the potential 
gain or losses relative to their specific situation (the reference 
point) rather than in absolute terms. Loss aversion is the 
property that a loss is valued more strongly than a gain of the 
same amount. In other words, if there is a loss and a gain of 
the same amount, the dissatisfaction caused by the loss is 
perceived to be greater than the satisfaction caused by the gain 
of the same amount, which differs from expected utility 
theory 

Fig. 2 shows the graph of the value function in prospect 
theory, where the origin of the graph is the reference point 
and the value (= satisfaction) is determined by the relative 
gain or loss from the reference point. According to loss 
aversion, even if the gain and loss from the reference point 
are the same, the negative value becomes greater than the 
positive value, indicating asymmetry. Applying this to the 
decision-making model shown in Figure 1, the baseline plan 
that does not include risk responses becomes the reference 
point. The left-hand side of 𝑃"𝐿" − 𝑃!𝐿! > 𝐶, which is the 
condition under which the risk response plan should be 
implemented, can be regarded as gain and the right-hand side 
as loss. Assuming that the loss is valued 𝑘	(> 1)  times 
greater than the gain of the same amount, the condition 
becomes 𝑃"𝐿" − 𝑃!𝐿! > 𝑘	𝐶 , which is biased toward 
avoiding the implementation of risk response plan, i.e., 
keeping the original plan as unchanged as possible. The 
intentional indifference to risk [6] may be strongly influenced 
by this cognitive bias. 
 

 
 
Fig. 2.  The value function in prospect theory. 
 

Prospect theory suggests that the heuristics that are the 
source of cognitive biases are assumed to be intuitive by 
System I in dual process theory [7]. Dual process refers to the 
two information processing systems that humans possess. The 
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one is called System I, which is characterized by being 
intuitive, associative, fast, automatic, emotional, parallel 
processing, and effortless. The other is called System II, 
which is characterized as analytical, controlled, serial, rule-
dominated, and labor-intensive. System I and System II have 
a complementary relationship, with System I quickly finding 
answers to problems, while System II monitors the quick 
decisions made by System I and approves them or makes 
corrections and changes as needed. In order to deal with the 
difficulty of project risk management caused by cognitive 
biases, it is important to know how to effectively coordinate 
System I and System II. Croskerry argues that in order to 
make optimal decisions, it is important to have the right 
balance of the two systems in a "mixed " is important for 
optimal decision making [8]. However, in reality, there are 
many situations in which System II cannot necessarily modify 
System I. Project risk management, which requires quick 
decision making with difficult trade-offs for various uncertain 
events, would be one of the most typical examples. 

III. MACHINE-IN-THE-LOOP PROCESS IN PROJECT RISK MANAGEMENT 

The human decision-making process can be generalized as 
follows: (1) understand and realize the current situation based 
on input information from the environment, (2) formulate 
hypotheses and plan possible actions, (3) evaluate multiple 
options, (4) make a decision and take action, (5) update 
knowledge (if necessary) by checking the results of feedback 
from the environment. System I, which governs human daily 
thinking, tries to simplify decision-making by providing 
various shortcuts while following the above steps. For 
example, setting simplistic behavioral rules tied to specific 
situations, subjective evaluation of options based on personal 
preferences, etc. While this can greatly streamline the 
decision-making process, it can also be a breeding ground for 
biased thinking. In particular, the temptation to take shortcuts 
with System I is even stronger in project risk management, 
where decisions must be made within a limited amount of 
time, cost and resources. Therefore, it is necessary to 
deliberately activate an objective and logical System II and 
have a mechanism to monitor System I on a regular basis. 
System I and System II, so to speak, play a role like the 
accelerator and brake of a car. With these two systems in 
place, we can drive safely on a risky road. 

Artificial Intelligence (AI) technology can be used to 
reduce the impact of cognitive biases in human decision 
making. Humans and AI models have a complementary 
relationship. On the one hand, humans can use the prediction 
and inference results of AI to raise awareness and eliminate 
human preconceptions and biases, leading to rational decision 
making. On the other hand, AI models can supplement 
missing background knowledge and other data with human 
insights and feedback (inconsistencies with reality, 
differences with experience and senses, etc.) to improve their 
ability to respond to new changes and unexpected events. The 
complementarity between the human and AI models 
promotes effective coordination between System I and 
System II. The human decision-making process is activated 
by System I by default, but the intervention of AI evokes 
System II and promotes rational decision-making in which 
humans and AI cooperate. As a result, the influence of 
cognitive bias in human decision making can be expected to 
be reduced. Furthermore, through the feedback of action 

results to the AI model and the teaching of domain 
knowledge, efficient action rules based on human experience 
and knowledge will gradually be accumulated in the AI 
model. Bengio states that "AI is currently only able to play 
the role of System I, and will need to acquire System II 
capabilities in the future. [9]” However, this is only in the 
"machine-dominated world", and in the "human-dominated 
world", machines (AI) can play the role of evoking System II 
in humans without necessarily acquiring System II 
capabilities. 

We propose a machine-in-the-loop process in which the 
human decision-making process and the prediction and 
inference by AI models mutually complement each other. 
Figure 3 shows an image of the machine-in-the-loop process. 
The left side of Fig. 3 represents the human decision-making 
process, and the right side of Fig. 3 shows the cycle of 
prediction, estimation, and model updating of the AI model. 
The solid arrows represent the control flow, and the dotted 
arrows represent the data flow. The dotted arrows from the AI 
model to the human indicate (A) support for awareness 
through the presentation of new information and (B) the 
provision of decision-making materials based on prediction 
and estimation results. In these linkages, the interpretability 
of the AI model becomes very important because it is 
necessary for humans to interpret the prediction/estimation 
results and reflect them in decision making. The dotted arrow 
from the human to the AI model indicate model updates by 
feeding back the results of decision-makings and the gap 
between the prediction/estimation results and the reality, 
which contributes to continuous performance improvement of 
the AI model. 
 

 
 
Fig. 3.  An image of the machine-in-the-loop process. 
 

In the application to project risk management, human 
interpretation of the prediction/estimation results of AI 
models will enable recognition of the influence of unexpected 
factors on project failures and unknown similarities between 
different projects. It will help to make decisions about how to 
respond to ongoing projects based on failure probabilities. 
Human experience and knowledge can be also reflected in the 
AI model to continuously improve the accuracy of the AI 
model and the efficiency of model building work. 
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IV. CASE STUDY 
In this section, we describe a case study of machine-in-the-

loop risk management. It should be noted that the case is a 
modified version of an actual case for the purpose of 
explanation. The target organization has an organizational 
database that accumulates process data, such as project 
characteristics, development scale, progress in each process 
of development, cost, and quality. After clarifying the 
definitions of project success/failure, a prediction model of 
project failure was constructed. We used Naive Bayes 
classifier [10] [11] for the prediction model. Naive Bayes is a 
relatively simple machine learning model based on Bayes' 
theorem, which simplifies probability calculation by placing 
conditional independence assumptions between variables, 
and realizes an algorithm for sequential updating of posterior 
probabilities by adding new information. This mechanism of 
probability updating is called Bayesian updating, and is 
considered to be relatively close to the human decision-
making process in risk management [12]. Naive Bayes is also 
known to be computationally efficient and robust to noise. 
Missing values in the data can also be handled without 
contradiction by assuming that no new information was added 
in the Bayesian update. 

In the following, we will show how the human (Project 
Manager: PM) and the machine (AI) interact with each other 
in this case study. Fig. 4 shows the output of the machine (AI) 
on the importance of the explanatory variables, which 
indicates the magnitude of impact on project failure. The 
explanatory variables on the X-axis are arranged in the order 
of the process. According to the graph, we can observe that 
the later the process, the more the impact on project failure 
appears in the explanatory variables, which is consistent with 
the human (PM) sense. On the other hand, the impact of some 
explanatory variables includes those that are not consistent 
with the intuition of the human (PM). Additional research will 
divide the response into two cases: one where the human 
(PM) bias is corrected, and the other where new knowledge is 
put into the machine (AI) to build a new model. 

Fig. 5 shows the output of the machine (AI) on the risk 
transition of an ongoing project by process, where the red line 
is the project that the human (PM) is currently focusing on. 
According to the graph, we can observe that the project is 
relatively risky, as the failure probability gradually increases 
and eventually reaches a high probability, but the intuition of 
the human (PM) often differs from the observation. Further 
investigation including continuous monitoring of the project 
will modify both the human (PM) bias and the machine (AI) 
modeling. 
 

 
Fig. 4.  The importance of the explanatory variables. 

 
 
Fig. 5.  The risk transition of an ongoing project by process. 
 

Fig. 6 shows the output of the machine (AI) on the 
similarity between projects calculated using the intermediate 
data of the prediction model, and the cluster analysis 
performed on it. The vertical axis represents the distance 
between the projects; the closer the distance, the more similar 
the prediction results are. The projects in each cluster span 
different sectors, which may lead to new insights into the 
unexpected similarity of the projects. The red boxes show the 
projects that had similar predictions but different actual 
results (success or failure). By examining where the 
differences in actual results originated in these projects, the 
human (PM) may be able to understand the essential 
mechanisms of project failure and obtain hints for new data 
collection for the machine (AI). 
 

 
Fig. 6.  The similarity between projects calculated using the intermediate data 
of the prediction model. 
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We conducted an interview survey with two practitioners 
in the applied department of machine-in-the-loop risk 
management. In the interviews, the following questions were 
asked about the effects of the machine-in-the-loop process. 
 
Q1. Has uncertainty and ambiguity been reduced? 
 
Q2. Have preconceptions and biases been corrected? 
 
Q3. Did it promote consensus building among stakeholders? 

 
All interviews were recorded and coded by topic. As a 

result, 24 codes were obtained. We categorized all the 
obtained codes into positive and negative opinions, as shown 
in Fig. 7. In Q1 and Q2, about 70% of the opinions were 
positive, supporting that the machine-in-the-loop process is 
effective in reducing uncertainty and cognitive bias. On the 
other hand, in Q3, there are more negative opinions than 
positive ones, which may indicate that consensus building 
among stakeholders is related not only to cognitive bias but 
also to transaction costs [13], and that it takes a long time to 
see the effects because it requires continuous improvements 
of organizational culture. 
 

 
 
Fig. 7.  The results of categorizing all the obtained codes into positive and 
negative opinions. 

V. RELATED WORK 
Several related studies have been conducted on the 

application of machine learning to risk management. Takagi 
et al. conducted a questionnaire survey of 32 project managers 
to characterize risky software development projects [14]. Lee 
et al. present a Bayesian network risk management 
framework for large-scale engineering projects [15]. Two 
types of Bayesian network models were developed based on 
the results of questionnaire surveys, and sensitivity analysis 
and IF-THEN analysis of major risks were conducted. 
However, these studies did not explicitly discuss the 
complementarity between humans and AI. 

Interpretability of AI or machine learning has been studied 
extensively in recent years in connection with research such 
as Explainable AI [16] [17]. Lipton considers interpretability 
not as one simple concept but as a combination of several 
different concepts, and broadly categorizes it into 
transparency about the internal workings of a predictive 
model and a post-hoc interpretability about external outputs 
[18]. Many tools that implement post-hoc interpretability 
have recently been introduced. Local Interpretable Model-

agnostic Explanations (LIME) provides model-agnostic 
explanations by locally approximating the model around a 
given prediction [19]. As an extension of LIME, the SHapley 
Additive exPlanations (SHAP) method was proposed based 
upon the Shapley value concept from game theory [20]. 

Decision support systems (DSS) have been studied for a 
long time [21] [22], but they differ slightly from the purpose 
of this research in two respects: decision making is only a part 
of the problem-solving process, and DSS are mainly intended 
to provide unidirectional support from machine to humans. 
As for the bidirectional cooperation between humans and AI, 
human-in-the-loop machine learning has been proposed for 
applications in the medical field [23]. In medical applications, 
it is important for humans to be actively involved in the model 
building process to prevent errors, because there are special 
situations in which data sets contain events that occur only 
rarely and decisions are made based on the high level of 
human expertise. Human-in-the-loop is a concept that focuses 
mainly on the machine learning side, while we are more 
interested in the human side. Accordingly, the concept of 
Human AI teaming has been introduced in recent years. 
Bansal et al. state that for human-AI collaboration to achieve 
better performance, merely high accuracy is not enough; 
human mental models of AI capabilities are important [24]. 
Lai and Tan conducted experiments to see how human-AI 
coordination affects performance at several levels, from 
decisions made by humans alone to full automation by AI, 
and found that AI's presentation of predicted outcomes with 
explanations remarkably improves the performance [25]. 

VI. CONCLUSION 
The difficulty of project risk management is thought to be 

largely influenced by cognitive biases related to heuristics 
when humans make decisions about probability and 
frequency. In order to reduce the influence of cognitive bias 
in human decision making, we proposed a machine-in-the-
loop process in which the human decision-making process 
and the prediction and inference by the AI model cooperate 
in a complementary manner.  

We conducted an interview survey in a case study where the 
machine-in-the-loop process was applied to project risk 
management, and found that the majority of comments were 
positive about the reduction of uncertainty and cognitive bias, 
confirming the effectiveness of the machine-in-the-loop 
process. On the other hand, the ratio of negative comments on 
consensus building among stakeholders was relatively high. 
This may be because consensus-building among stakeholders 
requires a long time to be effective, since it is related not only 
to cognitive bias but also to transaction costs, and requires 
continuous improvements of organizational culture. 

We believe that the concept of machine-in-the-loop process, 
which will correct cognitive bias and extrapolation problem 
by the complementary use of humans and AI models, can be 
applied not only to project risk management but also to 
various other fields. 
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