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Abstract— Argumentation frameworks developed in Al have greatly eased the developments of many kinds of intelligent
systems. Recently, to deal with quantitative uncertainties, several authors integrate probabilities into such frameworks
to propose probabilistic argumentation frameworks. However, the developments of intelligent systems using these new
frameworks are still hindered by the lack of programming tools and environments. In a previous work, interested in the
Probabilistic Assumption-based Argumentation framework (PABA), we have developed several inference procedures and
a multi-semantics reasoning engine for it. In the current work, utilizing this engine, we propose a programming toolbox
for developing argumentation-based decision systems capable of capturing different reasoning attitudes of decision makers
in the presence of qualitative and quantitative uncertainties. We demonstrate the toolbox using examples of commonsense
reasoning as well as reasoning by experts in smart electrical grid.
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I. INTRODUCTION

The developments of intelligent systems haven been greatly
eased by argumentation frameworks developed in Al, notably
Dung’s Abstract Argumentation framework [5] (AA) which
is now considered as the standard one. In this paper, we
focus on argumentation-based decision making systems (or
just decision systems for short) by which we mean intelligent
systems capable of simulating practical reasoning of humans,
which, as suggested by Dung himself [4], includes not only
commonsense reasoning but also reasoning by experts and
their integration. In fact many researchers in Al have viewed
argumentation as an universal mechanism humans use in their
practical reasoning, and hence they let argumentation play
an important role in building their decision systems. Using a
range of standard argumentation semantics, they can succinctly
capture different reasoning attitudes of decision makers which
they can hardly do with non-argumentation formalisms such as
influence diagrams or Bayesian networks [13]. Let’s illustrate
this strength by an example. Suppose that you are planing a
road trip with four friends: Anne, Bob, Chris, David 1 all
of whom have expressed their desires to go to the beach,
unfortunately your car seats at most three passengers. You
think that both Chris and David are in love with Anne and
hence if Chris and David join then Anne will not join. Suppose
that you have two goals: “Bob joins” and “Anne joins”, will
you go to Pattaya - a coastal city - or look for another
destination? Let’s figure out who are three passengers in your
car. It is clear that they can be any triple in {Anne, Bob,
Chris, David} except {Anne, Chris, David}. In other words,
they can be {Anne, Bob, Chris}, {Anne, Bob, Chris} or {Bob,
Chris, David}. Thus, Bob surely will join while Anne may
or may not join. Hence, if you have a skeptical reasoning
attitude, you may count only the goal “Bob joins” and look
for another destination. However, if you have a credulous
reasoning attitude, then you will count both goals “Bob joins”
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and “Anne joins” and hence consider Pattaya as an acceptable
destination.

To capture a credulous reasoning attitude, we often use the
preferred (aka admissible) argumentation semantics [5]. To
demonstrate, let’s represent your beliefs about the trip plan-
ning by an Assumption-based Argumentation (ABA) frame-
work F = (R, A, ) consisting of a set of assumptions
A = {[r1]} U {arguably(z) | x € {aj,bj,cj,dj}} (with
contraries —r; and —z respectively) and a set inference rules
R containing?:

r1:aj < aw,[r1],arguably(aj) r7 : aw < beach

r9 1 bj + bw, arguably(bj) rg : bw < beach

r3 1 ¢j + cw,arguably(cy) r9 : cw < beach
ry 1 dj + dw, arguably(dj) r10 @ dw < beach

r5 : false < aj,bj, cj,dj r11 : beach +

re : [r1] < ¢j,dj

Here, rules rq,...,r4 say that if your friends want to join
(aw, bw, cw, dw stand for “Anne wants to join”, ..., “David
wants to join” respectively), then, if possible, they can always
join (aj, bj, cj, dj stand for “Anne joins”, ..., “David joins”).
Rule 75 is a shorthand for several transpositions such as
—aj < bj, cj,dj to represent that your car seats at most three
passengers. Rule rg says that r; is not applicable if cj,dj
hold. Rule 77,...,r1o say that all four friends want to go to
the beach. Lastly 717 says that Pattaya is a coastal city.

The preferred ABA semantics identifies one or several
subsets of A as preferred extensions and deems a
proposition as accepted if it is supported by a preferred
extension. Here there are three preferred extensions:
{arguably(aj), arguably(bj), arguably(cj), [r11},
{arguably(aj), arguably(bj), arguably(dy), [r11},
{arguably(bj), arguably(cj), arguably(dj)}. So  aj,bj
are both accepted - coinciding with your conclusions if you
are a credulous reasoner.

To capture a skeptical reasoning attitude, there are several
argumentation semantics: the grounded semantics captures
the “most” skeptical reasoning attitude; the ideal semantics

2ABA will be defined formally later.



captures the “ideal” skeptical reasoning attitude; while the
skeptical preferred semantics captures the “right” skeptical
reasoning attitude. For example, in the above ABA F, bj is
accepted under the skeptical preferred semantics, but not ac-
cepted under the grounded semantics and the ideal semantics,
both of which has the empty set as an unique extension.

Now, to see the limitations of ABA-based decision making
systems, let’s extend your trip planing problem a bit. To
encourage Anne to join, you look for another destination that
Anne wants to go but Chris or David may not. You find
out Chiang Mai - a mountainous city. In fact Anne does not
want to go to the mountains but she wants to see the flower
festival in Chiang Mai. Here clearly even though you are not
certain whether Chris and David really do not want to go to
the mountains, you can soundly conclude that the goal “Anne
joins” is consolidated because provided that either Chris or
David does not want, then Anne joins surely. Continue using
ABA, we may use the following inference rules to represent
the new information.

aw < flower

cw < mountain, cwm

dw + mountain, dwm

where cwm, dwm are assumptions representing uncertain-
ties “Chris wants to go to the mountains” and “David wants
to go to the mountains” respectively.

But these rules are not really right, for if you have some
degrees of beliefs in “Chris wants to go to the mountains”
and “David wants to go to the mountains”, then you do not
find your degrees of beliefs in these rules. In general, ABA
represents uncertainties by assumptions and so these uncer-
tainties have to be qualitative. Representations of quantitative
uncertainties and/or degrees of beliefs necessarily involve
numbers, which, traditionally, are probabilities. And in the
presence of probabilities, ABA semantics can not capture the
reasoning attitudes of decision makers. For example, in the
above situation, you are interested in the lower/upper bound
of probability that “Anne joins the trip”, rather than merely
whether Anne may join.

In fact, it has been well recognized that the standard
Abstract Argumentation as well as its logic-based instances
like ABA is inadequate in capturing argumentation involved
quantitative uncertainties and/or probabilities. To remedy this
inadequacy, several models of Probabilistic Argumentation
(PA) have been proposed, notably [6], [9], [25], [12], [8], [24].
In a previous work [11], recognizing that many PA models
can be easily be translated into Probabilistic Assumption-based
Argumentation [6] (PABA), we focused on PABA, developing
several inference procedures and a multi-semantics reasoning
engine for it. In the current work, utilizing this engine, we
propose a programming toolbox for the developments of
argumentation-based decision systems that have to deal with
both qualitative and quantitative uncertainties. Our toolbox
consists of three components: 1) Decision framework allowing
abstract specifications of decision situations with qualitative
and quantitative uncertainties; 2) Translator converting such
specifications into PABA frameworks; and 3) PABA reasoning
engine computing the acceptability degrees of each decision
under different reasoning attitudes.

flower
mountain

To our best knowledge, so far the only application of PABA
has been the simulation of jury-based dispute resolution by
Dung and Thang [6] and the current work is the first proposal
of decision making using Probabilistic Argumentation in gen-
eral and PABA in particular. However, there is a long line of
work done on decision making using AA as well as its logic-
based instances among which closest to our work are those
using ABA, notably [20], [18], [26], [7], [2]. In comparison
with these, our work not only allows quantitative uncertainties
but also has other advantages regarding the capturing of
reasoning attitudes in the presence of quantitative uncertainties
and the accrual of arguments for/against a decision, as will be
elaborated in the paper.

The rest of this paper is structured as follows: section II
reviews argumentation frameworks and a canonical decision
framework with preferences and qualitative uncertainties; sec-
tion Il presents our toolbox; section IV uses the toolbox
to develop a decision support system simulating the decision
making of experts on electric distribution in smart grid®; finally
section V concludes.

II. BACKGROUND

A. Abstract Argumentation

An AA framework [5] is a pair (AR, Att) where AR is a
set of arguments, Att C AR x AR and (A, B) € Att means
that A attacks B. S C AR attacks A € AR iff (B,A) €
Att for some B € S. A € AR is acceptable wrt to S iff
S attacks every argument attacking A. S is conflict-free iff
S does not attack itself; admissible iff S is conflict-free and
each argument in S is acceptable wrt S; complete iff S is
admissible and contains every arguments acceptable wrt S;
a preferred extension iff S is a maximal (wrt set inclusion)
complete set; the grounded extension iff S is the least complete
set. An argument A is accepted under semantics sem, denoted
AA F Fgem A, iff Ais in a sem extension. In this paper, we
focus on sem € {pr,gr} - the preferred semantics and the
grounded semantics. For any other semantics sem (see [5]),
it holds that AA F kg A= AA Fleem A= AA F ) A
and hence gr represents the most skeptical reasoning attitude
while pr represents a credulous reasoning attitude.

B. Assumption-based Argumentation

As AA ignores the internal structure of argument, an in-
stance of AA called Assumption-Based Argumentation (ABA
[21], [19]) defines arguments by deductive proofs based on
assumptions and inference rules. Assuming a language L
consisting of countably many sentences, an ABA framework
is a triple F = (R, A,” ) where R is a set of inference
rules of the form 7 : Iy < l1,...,l, (n > 0)*, A C L is
a set of assumptions, and ~ is a (total) one-to-one mapping
from A into £, where T is referred to as the contrary of x.
Assumptions do not appear in the heads of inference rules and
contraries of assumptions are not assumptions.

3This section is a comprehensively revised and improved version of [17].
“For convenience, define head(r) = lo and body(r) = {l1,...In}.



A (backward) deduction of a conclusion 7 supported by a
set of premises @ is a sequence of sets Sy, .55, ...,S, where
S; C L, S = {n}, S, = Q, and for every i, where o is
the selected proposition in S;: 0 ¢ @ and S; 11 = 5; \ {o} U
body(r) for some inference rule r € R with head(r) = o.

An argument for m € L supported by a set of assumptions
Q is a deduction d from 7 to @ and denoted by (Q,d, 7).
An argument (Q,d, ) attacks an argument (Q',d’,n’) if =
is the contrary of some assumption in Q’. For simplicity, we
often refer to an argument (Q,d, ) by (Q, ) if there is no
possibility for mistake.

A proposition 7 is said to be credulously/groundedly ac-
cepted in ABA F, denoted ABA F I, m (resp. ABA
F kg4 ) if in the AA framework consisting of above defined
arguments and attacks, there is an argument for 7 accepted
under the preferred/grounded semantics.

C. Probabilistic Assumption-based Argumentation

AA as well as its logic-based instances including ABA can
not model argumentation processes involving probabilities. To
address this problem Dung and Thang in [6] first integrate
probabilities into AA to propose a Probabilistic Abstract
Argumentation framework (DT’s PA) and then combine DT’s
PA with ABA to propose Probabilistic Assumption-based
Argumentation (PABA) framework.

Definition 1: A probabilistic assumption-based argumenta-
tion [6] (PABA) framework P is a triple (A,, R,,F) where

1) F=(R,A, ) is an ABA framework.

2) A, is a finite set of positive probabilistic assumptions.
Elements of =A, = {-p | p € A,} are called negative
probabilistic assumptions’.

3) R, is a set of probabilistic rules of the form [« : z] +
Bi,....8n n >0,z €0,1,a € A, U—-A,, where
[ : ], called a probabilistic proposition, represents
that the probability of probabilistic assumption « is z.

Definition 2: (From [11], [6]) PABA P = (A,,R,,F) is
well-formed if it satisfies four constraints below.

1) For each oo € A, U-A,, o does not occur in A or in
the head of a rule in R, and [« : z] does not occur in
the body of a rule in R UR,,.

2) If R, contains [« : x] < f1,..., By, then it also con-
tains a complementary rule [~ : 1 —2] < B,..., Bn.°

3) For each o € A, U—A,, there exists Pa, C A, s.t. for
each maximal consistent subset {31, ..., B} of Pa,U
—Pay, R, contains a rule [a : z] < f1,. .., Bm.

4) If R, contains two rules 71,72 with heads [« : z] and
[ : y], © # y, then either conditions below holds.

a) body(ry) C body(rz) or body(rs) C body(r1).
b) 6 € body(r1) and =6 € body(r2) for some § € A,.

Example 1: Continue the trip planning in the introduction,
your beliefs about Chiang Mai can be represented by PABA
P = (Ap,Rp, F) where

o ABA F consists of assumptions {[r1]}U{arguably(z) |

x € {aj,bj,cj,dj}} and inference rules

5— is the classical negation operator

6In examples, we will not list complementary rules to save space.

p_bwm |- p_bwm p-cwm | =p_cwm
05 05 06 04
p_dwm | - p_dwm
p_cwm 0.9 0.1
- p_cwm 0.1 0.9 @

Fig. 1. Bayesian network representing A, and Rp.

aw < flower
bw < mountain, p_bwm
cw — mountain, p_cwm
dw < mountain, p_dwm
false + aj,bj,cj,dj mountain
=[r] « ¢j, dj flower +
e A, = {p_bwm,p_cwm,p_dwm} consisting of proba-
bilistic assumptions representing your degrees of beliefs
that Bob/Chris/David wants to go to the mountains.
« For the sake of example, let R, consist of the following
probabilistic inference rules
[p_bwm : 0.5] [p_cwm : 0.6] +
[p_dwm : 0.9] + p_cwm [p_dwm : 0.1] - —p_cwm
stating that Bob’s and Christ’s interests in going to the
mountains are independent, being 50% and 60% re-
spectively; but Davis’s interest positively correlates with
Chris’s interest (probably because they are close friends).

aj + aw, [r1], arguably(aj)
bj + bw, arguably(bj)
cj + cw, arguably(cj)
dj + dw, arguably(dj)

In this paper, we restrict ourselves to so called Bayesian
PABA frameworks for which in [11] we have developed
inference procedures for different semantics and implemented
them to obtain an PABA reasoning engine called PENGINE’.
Intuitively, an PABA framework is Bayesian [11] just in
case its .4, and R, components can be represented by a
Bayesian network [13] with a set of nodes A, and conditional
probabilities stated by R,. In defining a Bayesian PABA
framework, instead of listing sets A, and R, we can just give
a Bayesian network. For example, in defining the Bayesian
PABA framework in Example 1, we could give the Bayesian
network in Fig. 1.

To define the semantics of a (Bayesian) PABA P =
(Ap, Rp, F), let’s adopt some notations.

o A possible world is a maximal (wrt set inclusion)
consistent subset of A, U —A,. W denotes the set of
all possible worlds.

o For each possible world w € W, ABA F, =
(R, A, ™) where R, 2 RU {p +| p € w}.

Definition 3: Wrt Bayesian PABA P = (A, Rp, F), the
probability that a proposition 7 is acceptable wrt semantics
sem is

Probsen, (m) =
WEW:ABA Fbsem™
where P(w) is the probability of w according to the
Bayesian network representing A, and R,.

P(w)

7http://pengine.herokuapp.com



From the following proposition, we can say that Probg, ()
and Prob,,(m) are the lower/upper bound of the probability
of the acceptability of .

Lemma 1: 0 < Probg,(m) < Probsem(m) < Proby,(m) <

> P(w) =1 for any semantics sem [11].
weWw

In other words, Prob,, represents the reasoning attitude
of the most skeptical reasoners while Prob,, represents the
reasoning attitude of credulous reasoners.

Example 2: (Continue Example 1) There are eight possible
worlds:

w P(w)

wo {pbwm»pcwma pdwm}’ 0.27
w1 {pbwrn,pcwma _‘pdwm} 0.03
w2 {pbwm» Pewm s pdwm} 0.02
w3 {pbwm., “Pewm s _'pdwm} 0.18
w4 {_‘pbwma Pecwms pdwm} 0.27
Ws {_'pbwma Pewms _'pdwm} 0.03
Wwe {_‘pbwma _‘pcwmypdwm} 0.02
wr {_'pbwma Pewm _'pdwm} 0.18
=1

The acceptability of aj in each ABA F,, is as follows.

wo w1 w2 w3 W4 Ws We wr
Fobpraj? |y |y |y |y |[n |y |y ]|y
Fobgraj? | m |y |y |y |n |y |y |y

Intuitively, Anne surely does not join if both Chris and
David want to join but not Bob (i.e. cwAdw A—bw, which hap-
pens in possible world wy), because the rule —[r5] + c¢j,dj
fires. However, if Bob, Chris and David all want to join (i.e.
bw A\ cw Adw, which happens in possible world wg), then Anne
may or may not join. When she joins, she will join with Bob,
and with either Chris or David because the car can not seat
four passengers (note that —[r5] < ¢j, dj does not fire in this
situation). And when she does not join, then three passengers
joining the trip are Bob, Chris and David.

Similarly, the acceptability of bj in each ABA F, is as
follows®.

Wo | W1 | W | W3 | Wy | Ws | We | Wy
FoFprbj? |y y y y n n n n
Fobgrbj2 | n | y | y |y | n|n|n|n

So Proby-(aj) = 1 — P(ws) = 0.73; Probg,(aj) =
Probp,(aj) — P(wp) = 0.46. Similarly, Prob,,(bj) =
P(w1)+ P(w2) + P(ws) = 0.23; Prob,,(bj) = Prob,,(bj) +
P(wog) = 0.5. In other words, if you have a credulous
reasoning attitude, then your conclusions are: with 73% Anne
will join; with 50% Bob will join. On the other hand, if you
have the most skeptical attitude, then your conclusions are:
with 46% Anne will join; with 23% Bob will join.

8Here we can see that in possible world wp, the grounded semantics is too
skeptical. As mentioned in the introduction, the “right” skeptical semantics -
the skeptical preferred semantics - accepts bj.

D. Decision Making with Preferences and Qualitative Un-
certainties

Decision making can be viewed as a reasoning process in
which the decision maker first evaluates alternative decisions,
based on their attributes, to determine how they satisfy his
goals, and secondly selects a decision taking into account the
preferences between goals [20]. A decision framework should
describe not only various forms of beliefs that the decision
maker may have as input to this reasoning process, but also
the criteria for selecting a decision given such beliefs. For
example, a canonical decision framework which can deal with
preferences and qualitative uncertainties is defined in [18],
[26], [7], [2] as a tuple (D, A, G, P, R4, Rg) where

e D ={dy,ds,...} is a finite set consisting of alternative
decisions.

e A ={aj,as,...} is a finite set consisting of attributes
of decisions.

e G=1{g1,92,...} is a finite set consisting of goals which
the decision maker wants to achieve.

e P: G — {1,2,...} ranks the goals so that the higher
the number assigned to a goal, the more important the
goal is for the decision maker.

e Ry : D x A — {1,-1,0} where Ra(d,a) = 1 (resp.
—1) represents that the decision maker is certain that d
has attribute a (resp. does not have a); and Ra(d,a) =0
represents that the decision maker is completely uncertain
about both propositions.

e R : Ax G — {1,-1,0} where Ra(d,a) = 1 (resp.
—1) represents that the decision maker is certain that g is
satisfied by a (resp. not satisfied by a); and Ra(d,a) =0
represents that the decision maker is completely uncertain
about both propositions’.

We shall assume that reasoning in making decision is purely
by argumentation. So the decision maker concludes that a
decision d € D satisfies g € G, denoted satBy(g,d), only if
he has a reason for satBy(g, d), which must be the existence
of some a € A such that R4(d,a) = Rg(a,g) = 1. Hence,
for the decision maker, the value of d, denoted valueO f(d),
is the set {g € G | satBy(g,d)}. Note that the actual value
of d may be different from valueO f(d) because the decision
maker’s beliefs may be incomplete or incorrect.

Hence we can say that (in the eyes of the decision
maker) a decision d dominates [18] another decision d’ iff
valueOf(d') C valueOf(d); d is a weakly (resp. strongly)
dominant decision if d is not dominated by any decision (resp.
d dominates every other decisions). As a general rule, the
decision maker wants to select a strongly dominant decision.
However in case no such decisions exist, he may have to select
a weakly dominant decision.

Still, a problem with the notion of weakly dominant
decisions is that there may exist more than one weakly
dominant decision in a decision framework. For example,
if D = {d,d'} and valueOf(d) \ valueOf(d') # 0
and valueOf(d') \ valueOf(d) # 0, then neither decision
is dominated by the other, and hence both d and d’ are

90ur symbols 1, -1, 0 respectively correspond to symbols 1, 0, u in [7],
[26], [2]



weakly dominant. It is clear that to select between d and
d’, the decision maker must compare the difference between
valueO f(d) \ valueO f(d") and valueO f(d") \ valueO f(d),
based on preferences associated with individual goals. Un-
fortunately, unless there is a way to accrue multiple goals,
we have to equate G with argmaz {P(g) | ¢ € G}. So,
we may say that d is max-preferred to d' if maxz{P(g) |
g € wvalueOf(d) \ valueOf(d)} > max{P(g) | g €
valueO f(d') \ valueO f(d)}'°. Then we can further say that
d is most preferred if there is no d’ € D \ {d} that is max-
preferred to d.

Given a decision framework (D, A, G, R4, Rg, P), com-
puting weakly/strongly dominant decisions or most preferred
decisions is a simple programming task. It can be programmed,
for example, by ABA frameworks as presented in [18], [26],
[7]. Note that the accrual of arguments is not addressed in
ABA, and hence decision frameworks purposely engineered
for ABA (e.g. those in [18], [26], [7]) often do not specify
how to accrue multiple goals satisfied (or unsatisfied, reps.) by
a decision in argumentation for (against, resp.) the decision. In
a similar vein, ABA can not handle quantitative uncertainties,
and hence such decision frameworks can not have quantitative
uncertainties.

III. A TOOLBOX FOR DEVELOPMENTS OF DECISION
SYSTEMS

In this section we present a programming toolbox for the
developments of argumentation-based decision systems that
have to deal with both qualitative and quantitative uncertain-
ties. Our toolbox is intended for the development methodology
illustrated in Fig. 2, in a similar way that UML diagram,
UML diagram-Java converter and Java compiler forming a
toolbox for the development of general Java applications
in OOP methodology. Hence our toolbox consists of three
components: 1) Decision framework allowing abstract specifi-
cations of decision situations with qualitative and quantitative
uncertainties; 2) Translator converting such specifications into
PABA frameworks; and 3) PABA reasoning engine computing
the acceptability degrees of each decision under different
reasoning attitudes.

A. Decision Framework with Qualitative and Quantitative
Uncertainties

Let’s start by extending the canonical Decision framework
(D, A,G, P,Ra, Rg) presented in the previous section to deal
with quantitative uncertainties and the accrual of multiple
goals taking into account preferences over goals. Recall that
there components R4 and R¢ are functions from D x A and
A x G to {1,—1,0}, where symbol 1 (resp. —1) represents
that the decision maker is certain that a particular decision
has (resp. does not have) an attribute, or a particular goal
is satisfied (resp. not satisfied) by some attribute. So these
functions do not allow us to say that the decision maker has
only some belief degrees in those propositions. To address

10Conventionally, maz{} = 0. Note that this definition of “max-preferred
to” is a slightly modified version of the definition of “preferred to” in [20].
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Fig. 2. Developing Decision systems

this problem, we change the domains of R4 and R¢ to [0, 1],
where R4(d,a) € [0,1] (resp. Ra(a, g) € [0, 1]) is interpreted
as degree of belief or probability. For convenience, we shall
use two sentential forms:

e« a—%g representing that R (g,a) = o € [0, 1]

o d—%a representing that R4 (d,a) = « € [0, 1]

To allow goals to be satisfied by a conjunction of multiple
attributes and/or to have subgoals, we extend the first form to
the following form.

(£.G)

where m+n > 0;a; € Afori=1,...,m; sgj,g € SGUG
for j € 1,...,n with SG being the set of sub-goals such that
SGNG=0.

Note that form f.G could be viewed as generalizing many
existing sentential forms for describing goals breakdown struc-
ture such as the form (ii) in [18] which is a special case of
f.G with a = 1.

Similarly, we extend the second form to the following:

d, fi,... fx =% a (f.A)

where d € D, k > 0,and f;, € F (i = 1,...,k) with
I being the set of fluents - environment variables which
often influence decision’s attributes but not influenced by the
decision itself.

To represent the decision maker’s beliefs about fluents, we
introduce a third sentencial form f.E

- f

A1,.-+,Q0m;8G1,-.-59n %ag

(f.E)

representing that the decision maker has degree of belief «
in the occurrence of fluent f '!.
To represent the decision maker’s preferences over goals,

we allow a forth sentential form f.P
—* important(g) (f.P)

Finally, to allow any dependencies between probabilities,
we do not require « in the above sentential forms to be a

"Note that we could have viewed fluents as a kinds of goals/subgoals and
consider form f.E as a special case of form f.G with m = n = 0. However
viewing fluents as goals/subgoals may create some confusion in reading form
f.A.



probabilistic value in interval [0,1]. Instead, we allow « to be
a binary random variable taken from a set of random variables
associated with a joint probability distribution. Traditionally,
such a distribution is represented by a Bayesian network.

Hence we define a Decision Framework with Qualitative
and Quantitative Uncertainties (or just Extended decision
framework, for short) by a tuple (D, A, N, B) where

e D ={dy,ds,...} is a finite set consisting of alternative

decisions.

e A={aj,as,...} is a finite set consisting of attributes.

o N is a Bayesian network defining a probability distri-

bution Prs over a finite set of binary random variables
.Ap = {0517042,...}.

e B is a finite set of beliefs in the following sentential

forms

A1y ey Oy SG1s - - 5 SOn —>[a]g (£.G)
d fi,..., fu > a (f.A)
el f (fE)
[ important(g) (f.P)

where d € D; a;,a € A; a € Ay; m+n >0,k > 0.

Note that notation [a] means that « is optional. The absence
of o in a belief means that the belief is certain '2.

Example 3: Let’s twist your trip planning problem in the
introduction a bit: the flower festival in Chiang Mai is only
during the first week of February. Further, your car can
seat four passengers. Now your beliefs can be described
by an Extended decision framework (D, A, N, B) where
D = {emai,pat}, A = {beach, mountain, flower}, N has
five nodes p_bwm, p_cwm, p_dwm,p_im_aj,p_im_bj, and
B consists of the following beliefs.

o Form f.G:
aw — aj flower — aw
bw — bj mountain —P-"""™ bw
cw — cj mountain —P-"" cw
dw — dj mountain —P-T™ dw
beach — dw
beach — bw
beach — cw
beach — dw

o Form f.A:
cmai — mountain pat — beach

cmai, firstWeekFeb — flower
o Form f.E:
— firstWeekFeb

12We do not need to explicitly include the set of fluents F, the set of goals
G, the set of subgoals SG as components of the decision framework because
these sets can be determined from other components. Namely, F' contains an
element f just in case f is the right-hand side of some belief of the form
f.E in B. G contains an element g just in case g occurs in the right-hand
side of some belief of the form f.P; finally SG contains an element sg just
in case sg occurs in a belief of the form f.G and sg ¢ G U A

p_bwm | -p_bwm p_cwm | = p_cwm
0.5 0.5 0.6 0.4
@ p_im_aj | = p_im_aj
1 0
p_dwm | = p_dwm
p_cwm 0.9 0.1 p_im_bj | - p_im_bj
= p_cwm 0.1 0.9 0 1

Fig. 3. Bayesian network N.

e Form f.P
—P-tm_aj important(aj) —P-imbi important (bj)
For the sake of example, let A be given Fig. 3, which says
that the goal “Anne joins” is extremely important while the

goal “Bob joins” is not important at all.

To define the acceptability degree a decision, let’s adopt
some notions.

o A possible world is maximal consistent subset of A, U
- A,

We say that in a possible world w:

o Fluent f holds if B contains a belief for the form —[ f
where « is either absent or in w.

o d has attribute a if B contains a belief for the form
d, f1,... fr =1 a where f1,...f, hold and « is either
absent or in w.

e g is satisfied by d if B contains a belief for the form

ey Gy SG1, - - - SOn, —slel] g where d has attributes

Q1,...,Qm; SG1,- .., Sgy are all satisfied by d; and « is

either absent or in w.

ai, .

Definition 4: Wrt a possible world w in an Extended deci-
sion framework (D, A, N, B), a decision d € D is acceptable
if for each statement —® important(g) in B, either g is
satisfied by d or o & w.

Example 4: (Continue Example 3) Wrt possible world
{=p_bwm, p_cwm,p_dwm,p_im_aj,—~p_im_bj}, cmai is
acceptable. Intuitively, this says that even though “Bob does
not want to go to the mountains” and hence the goal “Bob
joins” is not achieved, but as long as the goal is not important
for you, Chiang mai is still an acceptable destination.

Definition 5: The degree of the acceptability of a decision
d, denoted AccDegree(d), is defined by the sum of Prps(w)
over the set of possible worlds in which d is acceptable.

B. Translation into PABA

Extended decision frameworks can be translated into PABA
as follows.

Definition 6: An PABA framework (A,, R, F) for a deci-
sion d € D in an Extended decision framework (D, A, N, B)
is such that

e A={d}U{~g| g€ G} where d=~d and =g = g

e R consists of the following rules

- g4 A1,y Am,y 81, - -« SGn, [
if B contains a Dbelief of the form
A1y -y QmySG1y - - - SOn —led g.

- a%fl,..

~fk7 [Oé]



if B contains a belief of the form d, f1, ... fr = a.
- f<[d
if B contains a belief of the form —!° f.
- —d + g, [a]
if B contains a belief of the form — important(g).
e R, and A, represents N
Example 5: (Continue Example 3) The PABA framework
(Ap, Rp, F) for decision cmai is as follows.
o A={d,~aj,—bj} where d = —d, —aj = aj and —bj =

bj
¢ R consists of
- Form f.G
aj < aw aw < flower
bj < bw bw < mountain, p_bwm
cj + cw cw — mountain, p_cuwm
dj + dw dw < mountain, p_dwm
aw < beach
bw < beach
cw < beach
dw + beach
— Form f.A

mountain $—

flower < firstWeekFeb
— Form f.E

firstWeekFeb «
— Form f.P

=d + —aj,p_im_aj =d < —bj, p_im_bj

e R, and A, represents the Bayesian network in Fig. 3.

The correctness of the translation is stated by the following
lemma.

Lemma 2: Let (Ap, Rp, F) be an PABA framework for
a decision d € D in an Extended decision framework
(D, A, N, B). Then AccDegree(d) = Probsenm(d) for any
semantics sem.

C. Structured PABA framework for Decision Making

As illustrated by Fig. 2, our toolbox is intended for the
development methodology of decision systems where the de-
veloper starts by constructing a decision framework describing
(not necessarily fully) the situation at hand. He then translates
this decision framework into an PABA framework and may
integrate into this PABA framework further knowledge. At
any time, he can produce an executable decision system by
just stacking the current PABA framework on the provided
PABA engine, or come back to any of the above steps to redo
it. We intend that what a decision framework is to a final PABA
framework for decision making is analogous to what an UML
diagram is to a final Java program that solves the problem
described initially by the UML diagram. And like the fact that
the final Java program often retains some structure from the
UML diagram (e.g. inheritance relations, method signatures),
the final PABA framework often retains some structure from
the decision framework. Hence we define structured PABA
frameworks for decision making as follows.

Definition 7: Wrt a set of goals G, a set of subgoals SG, a
set of attributes A and a set of fluents F', a structured PABA
framework (A, R,, (R,A, ")) for a decision d is such that

o A contains d and —g for each g € G where d = —d and
“g=g
e R contains subsets R, R4, Rg and Rp where
— Rq describes goal breakdown structure, containing
inference rules of the form

G A1,y Qmy,SYly---SGn, - -
where ai,...a, € AU-4; g € (GUSG);
$q1s- -+, 8gn € (GUSG)U-(GUSG); and m+n >
0.
— R4 describes attributes of decision d, containing
inference rules of the form

a%fl,...fk,...
where a € AU—-A; f1,... fr € FU-F and k > 0.
— Rp represents information about the environment
and/or background knowledge, containing inference
of the form

f—...
where f € FU-F.
— Rp represents the decision maker’s preferences over
goals, containing inference rules of the form
—d 4+ g, ...
where g € G.

Example 6: (Continue Example 5) To represent the situation
in the introduction, we need to integrate more knowledge, e.g.
that your car can not seat more than three passengers. The
final structured PABA framework (A,, R,, (R, A, ")) can be
as follow.

e A = {d,—aj,~bj} U Ac where Ac =

{arguably(z) | = € {aj,bj,cj,dj}}.
e R=RgURAUREURPp where
— R consists of

aj « aw, [r1], arguably(ayj) aw <+ flower
bj < bw, arguably(bj) bw < mountain, p_bwm
¢j + cw,arguably(cj) cw < mountain, p_cwm
dj + dw,arguably(dj) dw < mountain, p_dwm
false < aj, bj, cj,dj aw < beach
=[r1] < ¢j, dj bw < beach

cw <+ beach

dw < beach

{Iml} v

— R4 consists of
mountain <—
flower < firstWeekFeb
— REg consists of
firstWeekFeb <
— Rp consists of
=d + —aj, p_im_aj =d + —bj, p_im_bj

o A, and R, are given in Fig. 3.

Definition 8: Given a structured PABA framework for a
decision d, the lower/upper acceptability degree of d is defined
as Probg.(d) and Prob,,(d) respectively.

Example 7: (Continue Example 6) From the importance
of aj vs that of bj, it is easy to see that Proby(d) =
Proby,(aj) = 0.46 and Prob,,(d) = Prob,.(aj) = 0.73.

BNote that for a set X, =X denotes {—x |z € X}



Preferences Acceptability degrees
P(p_im_aj) | P(p_tm_bj) | Probp-(d) | Proby,(d)
1 1 0 0.73 0.46
2 0 1 0.5 0.23
3 1 1 0.5 0.23
4 0.5 0.5 0.6825 0.48
5 0 0 1.0 1.0

TABLE
THE ACCEPTABILITY DEGREES OF “CHIANG MAI” UNDER DIFFERENT
PREFERENCE PROFILES.

So if you are a credulous reasoner, then you consider that
with 73%, Chiang mai is an acceptable destination; while if
you are a skeptical reasoner, then you consider that with 46%
Chiang mai is acceptable.

Table I shows the lower/upper acceptability degrees of the
decision “Chiang mai” under different preference profiles.
It is not difficult but laborious to arrive at these results
manually so in the next section we show how to obtain
them from our PABA reasoning engine. Here let’s see how
these results are understandable: in profile 2 where we con-
sider that “Bob joins” is extremely important and “Anne
joins” is not important at all, Prob,,(d) = Prob,,(bj)
and Probg,(d) = Probg.(bj). In profiles from 3 to 5, we
consider “Bob joins” and “Anne joins” equally important,
Prob,,(d) and Prob,,(d) increase as the importance of the
goals decrease. When the goals are both not important at all,
Proby,(d) = Probg.(d) = 1.

D. PABA engine

Our toolbox uses PENGINE - an PABA engine devel-
oped in [11]. As illustrated by code Listings 1 and 2
which specify the PABA framework in Example 6, the
concrete syntax of PENGINE for receiving a (Bayesian)
PABAP = (A, Ry, (R, A, ")) consists of several predi-
cates and functors: iNas ([...]) lists assumptions in A4;

contr (...) refers to the contrary of a given assumption;
iRule (..., [...]) declares an inference rule of F;
iPas ([...]) lists probabilistic assumptions in 4,; and

iBN(...) specifies a file containing a Bayesian network (in
JSON format in accordance with libpgm'#) to represent R,,.

iRule (cw,[ mountain, p_cwm]).
iRule (dw,[ mountain, p_dwm]).

9% R_A (attributes)
iRule (mountain ,[]).
iRule (flower ,[ firstWeekFeb ]).

9% R_E (environment)
iRule (firstWeekFeb ,[]).

9% R_P (preferences)
iRule (contr(d),[not_aj, p_im_aj]).
iRule (contr(d),[not_bj ,p_im_bj]).

9% BN network
iBN(” ./ tests /paba—for—dm. json”).
iPas ([p_bwm,p_cwm,p_dwm, p_im_aj, p_im_bj]).

Listing 2. Textual content of paba-for-dm.json

Listing 1. Specifying the PABA framework in Example 6
9o Assumptions
iNas ([d, not_aj, not_bj, rl, arguably(aj),

arguably (bj),
9% Contraries
iRule (contr(not_aj),[a
iRule (contr(not_bj),[b

arguably (cj), arguably(dj)]).

iD.
il

9% R_G (goal breakdown
iRule (aj ,[aw,
iRule (bj ,[bw,
iRule (cj ,[cw,
iRule (dj ,[dw,

structure)
rl, arguably(aj)]).
arguably (bj)]).
arguably (cj)]).
arguably (dj)]).

iRule (contr (arguably(aj)),[bj, cj, djl).
iRule (contr (arguably(bj)).[aj, cj, dj]l).
iRule (contr (arguably(cj)).[aj, bj, djl).
iRule (contr (arguably (dj)).[aj, bj, cjl).

iRule (contr(rl),[cj,
iRule (aw,[ flower]).
iRule (bw,[ mountain, p_bwm]).

.

14See http:/pythonhosted.org/libpgm.

{
"V [Pp_bwm” ,”p_cwm” ,”p_dwm” ,”p_im_aj” ,”p_im_bj”],
"E”: [[7p_ewm”,”p_dwm”]],
“Vdata”: {
“p_bwm”: {
“ord”: O,
“numoutcomes”: 2,
“vals”: ["true”,”false”],
“parents”: null,
”children”: null,
“cprob”: [0.5,0.5]
.
“p_ewm”: {
“ord”: 1,
“numoutcomes”: 2,
“vals”: ["true”,”false”],
”parents”: null,
”children”: [”p_dwm”],
“cprob”: [0.6,0.4]
’
“p_dwm”: {
“ord”: 2,
“numoutcomes”: 2,
“vals”: ["true”,”false”],
“parents”: [“p_cwm”],
”children”: null,
“cprob”: {”[’true’]”: [0.9,0.1],
[ false ’]1”: [0.1,0.91}
"p_im_aj”: {
“ord”: 3,
“numoutcomes”: 2,
“vals”: ["true”,”false”],
“parents”: null,
”children”: null,
“cprob”: [1,0]
}
Tp_im_bj”: {
“ord”: 4,
“numoutcomes”: 2,
“vals”: ["true”,”false”],
“parents”: null,
”children”: null,
“cprob”: [0,1]
}
}
}

Once we have an PABA framework in the above syntax, we
can load it into PENGINE and query Probse,,(.) =7, as illus-
trated by Fig. 4. For example, if you load the PABA in Listings
1 and 2 and then query Proby,(d) =7 and Prob,(d) =7,
we will receive answers 0.73 and 0.46 respectively (see the
demonstration at http://pengine.heroku.com).

IV. SIMULATING EXPERT’S DECISION MAKING

In this section, we use the toolbox presented in the previous
section to develop a decision system simulating the decision
making of experts on electric distribution systems.
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Fig. 5. A power distribution network of Provincial Electricity Authority,
Thailand.

A. Service Restoration in Electric Distribution Systems

Fault in electric distribution systems is unpredictable, and
often results in a power outage. Service restoration aims at
finding a restoration plan - series of switching operations
- to restore power for the outage area, considering multiple
objectives and constraints. To get a handle on current prac-
tices in service restoration, we did a case study at a power
company'3. Fig. 5 shows a power distribution system under
its management which consists 3 substations, 5 feeders, 26
loads, and 19 switches. Power from substations flow through
feeders to be consumed at loads. A zone consists of adjacent
loads and connects with another zone via switches. Often the
spare capacities of feeders and the total loads of zones are
observed frequently by SCADA systems. Loads often vary
during time of day. Fig. 6 shows SCADA’s observations for
the loads within 24 hours. We can see the trend that loads are
at peak during working time and reduce during night time or
lunch time.

Now suppose that a fault occurs at Z1 in feeder F'1. The
circuit breaker C'B1 will trip automatically to isolate the fault,
causing a power outage in all zones from Z1 to Z5. Assume
that the operator has opened switch S1 to isolate the fault.
Now he needs to find a plan to restore power for all loads

5Provincial Electricity Authority of Thailand
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Fig. 6. SCADA’s observations for the loads within 24 hours

H2, HI, HI

#3 Open S4, Close S6, Close S3

TABLE II
CONSTRUCTION OF POSSIBLE PLANS BY APPLYING HEURISTICS

in the outage area, which consists of zones from Z2 to Z5
(see Fig. 5). The first step is to construct possible plans. Here
by experience the operator often applies several heuristics,
for example: H1 (Group restoration): If support feeders have
enough spare capacity for the entire outage area, then close a
normally opened switch between these feeders and the outage
area; H2 (Zone restoration): If support feeders do not have
enough spare capacity, then close a normally opened switch
to transfer some load of the outage area to a lateral feeder; H3
(Load transfer): The capacity of a supporting feeder can be
increased by transferring some part of its load to other feeders.
One application of a heuristic gives rise to one switching
operation, hence to construct a plan, the operator may need
to apply different heuristics multiple times, as illustrated by
Table II.

Once the operator has constructed possible plans, he needs
to evaluate how each plan satisfies his goals. Table III below
lists some common goals. Parameters related to goals could
be classified into: 1) system parameters are those intrinsic
to the power distribution system and often they can be
computed from a physical description of the system, and
2) environment parameters are those extrinsic to the power
distribution system and often they come from the environment.
For example, for the goal “the current on ;' feeder is in
range”, the feeder current I; is a system parameter, while the
maximal allowed current I;_,,4, 1S an environment parameter
specified by the power company. This classification is not
meant to be clear-cut, but often it makes sense, and more
importantly it suggests that we can obtain approximations of
system parameters by physically simulating a plan. Fig. 7
shows the simulation of restoration plan#1 (see Table II) using
DIgSILENT PowerFactory[1] - an industrial-strength power
system simulation software. So, the simulation says that the
current on feeder F'1 is O Ampere (due to the fault). The
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currents on other feeders (F'2 to F'5) depending on the actual
loads. Focusing on F'4, for example, in a light load period, the
current on feeder F'4 is around 0.258 (kA) while in a peak
load period, the current is around 0.381 (kA) (see Table IV
for detailed results related to F'4). By the policy of the power
company, if the nominal cross-section area of a feeder is 150
mm?, then its maximal allowed current is 0.36 (kA). So, if
feeder F'4 has this the nominal cross-section area, then we can
conclude that plan#1 satisfies the goal “the current on feeder
F'4 is in range” during the light load period, but not during
the peak load period.

B. Service Restoration Decision System

Following the methodology shown in Fig. 8, we ar-
rive at a more detailed structure of PABA framework
(Ap, Rp, (R, A, 7)) for a restoration plan d as follows.

e AD{d}U{—g | g € G} where G contains the following
goals (see Table III):

— radial Network (radial network topology)

- cFeeder;InRange (current on feeder i*" in range)
- vBus;InRange (voltage on bus i*" is in range)

— zone;Powered (zone i'" is powered)

Feeder | Current (kA) | Powered zones | Buses | Bus voltage (kV)
Z10 B402 22.46/22.39
F4 0.258/0.381 711 B404 22.60/22.59
B405 22.55/22.51
TABLE IV
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Fig. 8. Service Restoration work flow.

e R=RgURaUREUTRPp where
— R contains inference rules of the following forms:
x radial Network < networkTopo(radial).
where predicate networkTopo/1 describes the
network topology (e.g. radial, cyclic)
x cFeeder;InRange < cFeeder;(C),
maxC Feeder;(M), M > C.
representing that the current in feeder ‘" is in
range if it is less than the maximally allowed
current on that feeder.
* vBus;InRange < vBus;(V),
maxVoltage(Vmazx), Vmaz >V,
minVoltage(Vmin),V > Vmin.
representing that the voltage on bus i'” is in range
if is within the maximally and minimally allowed
voltages on that bus.
% zone;Powered < fedBy(zone;, feeder;),
cFeeder;(C),C >0
representing that a zone i* is powered if it is fed
by a feeder with a non-zero current.
— R4 contains inference rules of the following form
* networkTopo(_) + ...
x cFeeder;(_) < ...
* vBus;(_) « ...
* fedBy(_,_) + ...
representing the results of simulation.
— R contains inference of the following form
x maxCFeeder;(_) + ...
x minVoltage(_) + ...
x mazxVoltage(_) < ...
representing the power company’s policies
— Rp contains inference rules of the following form
* —d < —radial Network, . ..
* —d < —cFeeder;InRange, . ..
* —d < ~vBus;InRange, . ..
* —d < —zone; Restored, . . .
representing the power company ’s preferences over
goals.
For example, focusing on feeder F'4 of the distribution
network in Fig. 5, the PABA framework (A,, R,, (R, A, ))
for a restoration plan#1 (Table II) might be such that:



e AD{d}U{—g|g € G} where G contains
— radial Network
— cFeeder,InRange
— vBusyg2InRange, vBusyosInRange,
vBussosInRange.
— zoneygPowered, zone11 Powered

o A, contains lightLoad, peakLoad, workingHours,
simReliable (simulation is reliable), etc.
e R=RgUR4UREgURp where
— R4 contains (see Table IV)

x networkTopo(radial)

cFeedery(258A) «+ light Load, simReliable
cFeedery(381A) < peakLoad, simReliable
vBus402(22.46kV) « light Load, sim Reliable
vBus402(22.39kV) + peakLoad, simReliable
vBus404(22.60kV) « light Load, simReliable
vBuS404(22.59kV) + peakLoad, simReliable
vBus405(22.55kV) < light Load, sim Reliable
vBus405(22.51kV) + peakLoad, simReliable
fedBy(zoneyp, feedery) <

fedBy(zonei1, feedery) <

— RF contains

*x maxCFeedery(410A) <
x minVoltage(19.8kV') <
x mazxVoltage(24.2kV) +

— Rp contains

* X K K K X X X X

*

* —d < —radial Network
—d + —cFeedersInRange
=d < —vBusygeInRange
—d < —vBusyg4sInRange
—d < —vBusysInRange
—d < —zonejgPowered
—d < —zonei Powered

* XK X X X ¥

V. CONCLUSIONS AND DISCUSSION

The developments of intelligent systems haven been greatly
eased by argumentation frameworks developed in Al, notably
Dung’s Abstract Argumentation framework [5] (AA). How-
ever AA as well as its logic-based instances like ABA is
inadequate in capturing argumentation involved quantitative
uncertainties and/or probabilities. To remedy this inadequacy,
several models of Probabilistic Argumentation (PA) have been
proposed. Notably, on the abstract level there are Dung and
Thang’s model [6] (DT’s PA), Li et al’s model [9] (Li’s PA)
among others [25], [12], [8]. And on the instantiated level,
there are Dung and Thang’s PABA [6] which instantiates
DT’s PA by using ABA to structure arguments; p-ASPIC
[24] which also instantiates DT’s PA but using (a simplified
version of) ASPIC [22]. However, developments of practical
systems using these new frameworks are still hindered by the
lack of programming tools and environments. In a previous
work [11], recognizing that many PA models can be easily
be translated into PABA, we focused on PABA, developing
several inference procedures and a multi-semantics reasoning
engine for it. In the current work, utilizing this engine, we
propose a programming toolbox for the developments of

argumentation-based decision systems that have to deal with
both qualitative and quantitative uncertainties. To our best
knowledge, the current work is the first proposal of decision
making using PABA. So far the only application of PABA has
been the simulation of jury-based dispute resolution by Dung
and Thang [6]. However, there is a long line of work done on
decision making using AA or its logic-based instances among
which closest to our work are those using ABA, notably [20],
[18], [26], [7], [2]. In comparison with these, our work differs
distinctively on the ways we handle uncertainties, reasoning
attitudes of decision makers and the accrual of goals to argue
for/against a decision.

We have demonstrated the toolbox using sophisticated ex-
amples especially a case study of reasoning by experts on
electrical service restoration. So far many methods have been
proposed to solve the service restoration problem, from differ-
ent perspectives or interests, focusing on only one or several
steps of the problem [28], [15]: plan construction, attributes
determination, or plan comparison/selection. For example, in
[27] heuristics representing the expertise of experienced op-
erators are hard-coded in the proposed algorithm to construct
alternative plans. In [10] Huang C.M. proposes to use Fuzzy
cause-effect networks to deal with imprecise linguistic terms
occurring in such heuristics. In [3] the authors highlighted
the concept of relative performance index in evaluating and
ranking alternative plans. Optimization techniques like Ant-
Colony Optimization are applied when there is a large number
of plans to consider [23], [14], [16]. However, in practice
power restoration is still a manual process responsible by
experienced human operators. An important reason that makes
it hard to put proposed systems into practice is that the human
operators (users) and the system developers are different per-
sons, and so the operators constantly find a lot of information
important and relevant for a restoration task at hand, but either
oversimplified or totally ignored by the system developers. As
a result, the systems do not truly simulate the decision making
of the operators, let alone the operators’ reasoning attitudes.
To address this problem, we believe that programming tools
like the one we are proposing play an essential role, for they
can help operators to develop decision systems themselves.
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