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Abstract—We describe the recent development of the NECTEC Thai open-vocabulary automatic speech recognition 

system. Some of the techniques that were found beneficial over its baseline system are: hybrid word-subword language 

modeling to enhance the vocabulary coverage in a constraint resource; multi-conditioned noisy acoustic modeling to 

improve the system robustness and spoken-style language model interpolation using a newly developed large social 

media speech database; recent state-of-the-art speech features; and lastly, online decoding, speech compression, and 

Docker-based distributed computing to reduce the processing and data transmission time. These techniques result in 

a 29.0% word error rate on open-vocabulary noisy speech test sets which is 42.5% relatively lower than the baseline 

system. The overall system operates at nearly 1.2xRT which is promising for real applications. 
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I. Introduction 

arge vocabulary continuous speech recognition 

(LVCSR), automatic speech recognition (ASR) for 

natural speech with a large lexicon, has gained significant 

advance both in the research and implementation aspects 

in the past few years. Several well-known IT companies as 

well as research institutes have shown their systems run-

ning for open-vocabulary speech input. Two recent break-

throughs causing the shift of the technology are big data, 

the benefit of very large scale data obtained directly from 

social usage; and deep learning, a newly discovered learn-

ing machine capable to capture the high variation of the 

data. The IBM 2015 system [1] was presented to achieve 

23% word recognition error rate on a natural conversa-

tional task over telephones. The system took several so-

phisticated neural-network based algorithms as well as 

huge 2,000-hours training data into account. Google Eng-

lish Voice Search [2] reported its performance of less than 

20% word recognition error rate with 230 billion words 

language modeling data and more than 5,000 hours acous-

tic modeling data. The RWTH LVCSR system presented 

recently its performance on different languages including 

Polish, Portuguese, English, and Arabic. Significant im-

provements were obtained using many modern proposed 

techniques which made the recognition error rate from over 

30% down to less than 20% [3]. These reports convinc-

ingly express the applicability of the technology in the near 

future. 
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Research on Thai LVCSR in National Electronics and 

Computer Technology Center (NECTEC) has been con-

ducted since 2003 with a series of publications on Thai 

continuous speech corpora [4, 5, 6, 7]. A report on the sys-

tem development utilizing the LOTUS corpus showed the 

first baseline performance at 24.4% word error rate (WER) 

on a quiet environment, read speech test set [8]. NECTEC 

has joined Universal Speech Translation Advance Re-

search (USTAR) consortium [9] since 2007 and published 

a report on Thai ASR for a network-based speech transla-

tion service in travel and sport domains [10]. 

Research and development aiming at open-vocabulary, 

i.e. ASR with unlimited vocabulary, has just been focused 

in NECTEC since 2012. Key improvements have been re-

ported consecutively on both the algorithm for reducing 

out-of-vocabulary (OOV) words and the system architec-

ture suited for service implementation [11, 12, 13]. This 

paper summarizes the key improvements so far integrated 

in the 2015 NECTEC open-vocabulary ASR system. Com-

parative experiments over a baseline system along the past 

years regarding important issues we found on building 

open-vocabulary ASR and engineering the system are 

given.  

This paper is organized as follows. The next section de-

scribes our baseline system built around the year 2012-

2013. Section III presents improvement issues: hybrid 

word-subword language modeling, robust acoustic model-

ing, spoken-style language modeling, and run-time system 

design, respectively. Section IV shows experiments, Sec-

tion V discusses on existing problems and future work, and 

concludes this paper. 

 L 
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II. Baseline System Development 

a. Structure of ASR 

Our current Thai ASR system has been developed from an 

open-source KALDI toolkit [14], which is based on 

weighted finite-state transducer (WFST). Speech parame-

ters given by the feature extraction module are input to the 

decoding module which takes into account three major 

components, an acoustic model, a language model, and a 

pronunciation lexicon. To recognize a speech input, the de-

coding module constructs a word graph whose word links 

are tagged with their corresponding language model prob-

abilities. Each word in the graph is expanded to phones ac-

cording to the given pronunciation lexicon. Each phone re-

fers to its corresponding acoustic model. The speech input 

travels into the word graph producing potential word paths 

with top cumulative probabilities. A word recognition re-

sult is finally the word path having the highest cumulative 

probability. In the KALDI toolkit, the acoustic model, the 

language model, and the pronunciation lexicon are all 

crafted as WFSTs. An additional context-dependent phone 

WFST is needed for building a context-dependent acoustic 

model. All these WFSTs are composited in prior to form a 

single big WFST used in decoding. 

To achieve open-vocabulary ASR, the pronunciation 

lexicon as well as the language model have to largely cover 

words used in the language. While the larger the lexicon, 

the lower the recognition performance, a major problem of 

making the recognition vocabulary opened becomes how 

to trade off among the lexicon size and the recognition ac-

curacy. Open-vocabulary ASR also implies the system ca-

pability to accept a variety of speech input from different 

situations, equipments, and environments. Therefore, the 

system robustness is also another important issue to solve. 

Last but not least in our open-vocabulary ASR work, an 

overall system response time has also been taken into ac-

count as we aim finally to make the system usable in real 

applications. 

b. Development Resources 

Table I summarizes resources used to develop our baseline 

Thai open-vocabulary ASR system. The variety of training 

corpora insists the openness of acceptable speech input 

over speakers, speaking styles and domains, microphone 

equipments, and environments. The baseline system uti-

lized in total 224 hours of speech for acoustic modeling and 

66.74 million-words text for language modeling. 

c. Building the Baseline System 

In acoustic modeling, conventional 13-order Mel-fre-

quency cepstral coefficients (MFCC), their derivatives and 

second derivatives were extracted from all the speech data 

presented in the Table I. Using the KALDI toolkit, the 

speech features were used to train context-dependent tri-

phone Hidden Markov Models (HMM) covering 75 phones 

in Thai [4] plus a silence. N-gram language models with 

Chen and Goodman's modified Kneser-Ney discounting 

were constructed from the overall text data presented in the 

Table I using the SRILM toolkit [15]. The number of 

unique words appeared in the training text was more than 

140,000 which, for the baseline system, was simply in-

cluded in the system pronunciation lexicon. As mentioned 

earlier in the KALDI platform, all these system compo-

nents were constructed as WFST and recognition can thus 

use the WFST composition operation. Incorporate the 4-

gram language model could be achieved by language 

model rescoring. The baseline system run-time architecture 

was simply designed. The ASR server stores input speech 

in a buffer and starts recognition when the input is com-

pletely received. Decoding starts after speech features are 

extracted from the overall speech. And the output text is 

returned to the client after the recognition process ends. 

TABLE I  

Summary of resources used to develop the baseline ASR system. 

Component Tool Corpus Detail 

Acoustic 

model 

KALDI LOTUS 48 speakers, 55 hours of 

article read speech  

LOTUS-BN 147 hours of broadcast 

news speech 

USTAR 22 hours of the USTAR 

speech translation 

application over smart 

phone data channels 

Language 

model 

SRILM BEST 7.17 million words from 

12 domains 

Thai BTEC 0.83 million words in 

travel domain 

Thai HIT 0.60 million words in 

sport domain 

PANTIP 57.32 million words 

from 8 weblog domains 

LOTUS-BN 0.83 million words of 

broadcast news 

III. Key Improvement Issues 

Evaluations of the baseline system described above have 

shown limitations in many issues. In the past three years, 

many solutions to improve the system have been experi-

mented. This section expresses four key issues we have at-

tacked. 

a. Hybrid Word-Subword Language Modeling 

One of the most important issue to open-vocabulary ASR 

is the vocabulary coverage. Similar to other languages, 

new words in Thai have always been invented. Some of 

them are proper names, person names, and words in social 

networks. It is hence almost impossible to include all pos-

sible words in the system lexicon. Subword unit is one 

commonly used technique when modeling out-of-vocabu-

lary (OOV) words in many languages as multiple subword 

units can be combined to form a new word which is not 

seen before in the training data. Morpheme, a smallest 

meaningful unit in a language, becomes a natural choice 

for subword unit especially for highly inflected languages 

[16, 17]. In Thai, pseudo-morpheme (PM), a syllable-like 
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unit in a written form, has been proposed as a subword unit. 

The definition of the PM is a syllable and if any syllable 

cannot be represented by a bounded chunk of written text, 

that PM will span to cope with the least number of syllables 

whose written text can be bounded. Table II shows exam-

ples of Thai words and their corresponding PM segments. 

According to Thai writing rules, PM is more deterministic 

when compared with word and has been shown to help mit-

igate the word segmentation problem [18]. Given a word 

or a string of text, PMs can be determined quite accurately 

with an automatic syllable segmentation tool [19]. 

TABLE II  

Samples of Thai words and their corresponding PM units. 

Text Meaning Word PM Pronunciation 

กระทรวง

วัฒนธรรม 
Ministry of 

culture 

กระทรวง|

วัฒนธรรม 

กระ|ทรวง|

วัฒน|ธรรม 
k r a | s u:a ng | 

w a t th a n a | th 

a m 

ราชวงศ์จักรี Chakkri 

dynasty 

ราชวงศ์|

จักร ี

ราช|วงศ์|จักร ี r a: t ch a | w o 

ng | c a k kr i: 

 

 Nevertheless, in recognition, small units usually suffer 

from acoustic confusability and also cover shorter span of 

context in an n-gram language model. To resolve these 

problems, a hybrid language model which combines both 

unit types, PM and word, has been proposed [11]. In train-

ing, the text data were firstly segmented into words. Fre-

quently appeared words were kept in the text and stored in 

a system lexicon, and the rest words were further seg-

mented into PMs. Only frequently occurred PMs were kept 

in the lexicon and the rest PMs in the text were marked as 

unknown units. Then the mixed-unit training text were 

used to train the N-gram model as usual. While the most 

frequently used words could be covered by the lexicon, un-

seen words could also been modeled by sequences of PM 

units. By this way, we can fully manage the size of the lex-

icon while keeping the OOV rate minimal. 

b. Robust Acoustic Modeling 

Although the acoustic model in our baseline system has 

been built from speech corpora from various speaking en-

vironments, its performance against noisy speech is still 

low. A major cause is that we have not yet directly taken 

the noisy speech data into training. Besides the data, more 

advanced speech features and training algorithms have 

been proposed and have not yet integrated in our system.  

Instead of using noise-added speech data, a new speech 

corpus, LOTUS-SOC [7], has been developed to tackle this 

problem. The corpus was designed to cover quiet rooms 

and other 6 noisy environments including cafeteria, busy 

streets, cars or buses, sky or subway trains, shopping malls, 

and fast-food restaurants. Nearly 200 speakers were re-

quested to naturally utter the scripts selected from Twitter 

to mimic the spoken style. Recording was done via a smart 

phone application created specifically for corpus collec-

tion. This database gains an approximately 8.24 SNR ratio 

in average. An improved acoustic model was constructed 

by multi-conditioned training, which carefully mixed noisy 

and clean speech training data. 

Many advanced speech features have been proposed re-

cently. In our improved system, MFCCs of a focused 

speech frame and its 3 surrounding frames, 91 coefficients 

in total, were collected. Linear Discriminant Analysis 

(LDA) [20] was applied to reduce the features to 40. Max-

imum Likelihood Linear Transformation (MLLT) [21] was 

then used to de-correlate among the 40-order coefficients. 

This technique (LDA-MLLT) has been widely used and 

also available in the KALDI toolkit. Discriminative train-

ing based on Maximum Mutual Information (MMI) [22] or 

Maximum Phone Error (MPE) [23] has been a state-of-the-

art training algorithm recently as its ability to discriminate 

ambiguous phones often mistaken in the baseline training 

algorithm. These discriminative training methods have also 

been comparatively tested in our system. 

c. Spoken-style Language Modeling 

Naturally, ASR has been used for spoken-style speech in-

put and, hence, building ASR to cope with a spoken-style 

language model is one of major challenges since a large 

portion of language modeling data is from written text. Ac-

cording to Table I, although some spoken-style text e.g. 

LOTUS-BN and Thai BTEC have been included for lan-

guage modeling, their contribution is only up to 4% of the 

overall training data. Additional spoken-style training data 

are still required. 

The LOTUS-SOC corpus has been newly developed as 

described in the previous sub-section. The corpus is not 

only designed for robust acoustic modeling, but also for 

spoken-style language modeling by using Twitter text as 

reading scripts. Instead of combining the LOTUS-SOC 

text data into the overall language modeling set, language 

model interpolation shown in Equation (1) is conducted.  

 

log 𝑃(𝑊) = 𝜆 log 𝑃𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑊) + (1 − 𝜆) log 𝑃𝑆𝑂𝐶 (𝑊) 
(1) 

P(W) is an interpolated language model probability, PBase-

line(W) and PSOC(W) are probabilities of the baseline and the 

LOTUS-SOC language models,  and λ is an interpolation 

weight. Language model interpolation allows the system to 

bias its language modeling to either the baseline or the 

LOTUS-SOC one. 

d. Run-time System Architecture 

The baseline system architecture has to be improved when 

operating as a real service. Four features have been inte-

grated as illustrated in Fig. 1. First, a Voice Activity De-

tection (VAD) module was used to segment an input 

speech at the client side so that the client can gradually 

send small speech chunks to the ASR server during seg-

menting. A more complicated VAD module was integrated 

also in the server side to improve the system robustness 

against background noise. Second, Speex, an open-source 

speech codec [24], was incorporated to encode the speech 

chunk at the client side before data transmission. Speex not 

only compresses the data, it also suppresses background 

noise. Since the Speex is a lossy compression, the ASR 

acoustic model has to be rebuilt from Speex decoded 

speech to eliminate the mismatch among training and run-
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time data. Third, data streaming was introduced among cli-

ent/server transmission to reduce the waiting time required 

for input buffering. Using the released KALDI online de-

coder, all ASR models are preloaded before providing a 

service. The language model rescoring part described in the 

Section II.c is minimized to allow real-time processing. 

This of course degrades the overall system accuracy but 

tradeoffs for a better real-time factor. Almost all modules 

in the run-time architecture were developed in a multi-

thread concept. Therefore, all the modules can function 

simultaneously to save the overall processing time.  

 

 

Fig. 1. An improved run-time system architecture. 

Lastly, our system has been prepared for scalability by 

introducing a load balancing service that can receive mul-

tiple speech inputs and distribute to available multiple ASR 

engines running in different machines. Conventional dis-

tributed ASR employs a simple load balancing and queue 

management service. With an amount of ASR engines 

available in multiple machines, the load balancing service 

can share concurrent inputs to different machines in order 

to accelerate the recognition process.  

For a higher flexibility, the Docker platform [25] has 

been adopted. Docker is an open source software allowing 

multiple applications, worker tasks, and other processes to 

run autonomously on a single physical machine or across 

multiple virtual machines. The ASR server part in Fig. 1 is 

split into a front-end service, which takes care audio 

streaming and load balancing; and a speech recognition en-

gine, staring from feature extraction to text output. One 

Docker container is allocated for the front-end service and 

another set of containers is prepared for multiple speech 

recognition engines. The number of running speech recog-

nition containers can be varied by the traffic of service re-

quests. This Docker-based service is more resource effi-

cient than the conventional distributed service as a new 

speech recognition container can be created on-the-fly 

whereas the number of speech recognition engines has to 

be fixed in the conventional one. 

IV. Experiments 

In this section, experiments aiming to show the perfor-

mance improvement obtained by using each of the tech-

niques described above. Subsection a. summarizes the ex-

periments on hybrid word-subword language modeling, 

Subsection b. on robust acoustic modeling including both 

recent speech features, multi-conditioned and discrimina-

tive training, Subsection c. on spoken-style language mod-

eling, and Subsection d. on the recent system architecture. 

a. Experiments on Hybrid Word-Subword Language 

Modeling 

To express the effectiveness of hybrid language modeling, 

a test set was obtained from three subsets: 2,200 utterances 

of 10 speakers from the LOTUS-BN, 300 utterances rec-

orded by 3 speakers in office environment covering 5 gen-

res (newspaper, law, novel, social media and web board), 

and 2,000 utterances from the U-STAR speech translation 

mobile application.  

Fig. 2 illustrates comparative results between the hybrid 

language model system and the baseline system. It is clear 

that at a much smaller size of the system lexicon, the pro-

posed hybrid technique can even lower the OOV rate, re-

duce the test set perplexity (which means easier recogni-

tion), and preserve the overall PM recognition error. Hav-

ing this proposed technique, we later included more train-

ing text and our final run-time system contains 59,835 lex-

ical units in which 11,035 are PMs. 

 

 

 

Fig. 2. Experimental results of the hybrid LM system against the base-

line system. 

b. Experiments on Robust Acoustic Modeling 

To evaluate the system robustness against noisy speech, 

another test set was constructed. It contained 3,140 utter-

ances from 3 speakers in the LOTUS-BN; 1,916 utterances 

from the U-STAR speech translation mobile application, 

and 5,586 utterances from 14 speakers in 7 noisy environ-

ments taken from the LOTUS-SOC.  

TABLE III 

Word error rate (%) results of the systems using LDA-MLLT, 

discriminative and multi-conditioned training. 

Speech features 
Training condition 

Normal Multi-conditioned 

Baseline  50.4 34.9 

LDA-MLLT MPE 63.8 43.3 

MMI 49.1 32.4 

 

 

Table III shows evaluation results of the baseline system 

and improved systems using the LDA-MLLT features, the 

two discriminative training methods (MPE and MMI), and 

the multi-conditioned noisy speech training, described in 

the Section III.b LDA-MLLT and MMI discriminative 

training slightly help reducing the Word Error Rate 
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(WER). Multi-conditioned training clearly shows its effec-

tiveness to noise robust. The best setting is the LDA-

MLLT, MMI, and multi-conditioned trained system which 

achieved a 32.4% WER on this open-vocabulary noisy test 

set, which is 35.7% relatively lower than the baseline WER 

result. 

c. Experiments on Spoken-style Language Modeling 

To further improve the language model for spoken-style 

speech input, Twitter scripts used in LOTUS-SOC were 

used to build another n-gram language model. The 

LOTUS-SOC language model was interpolated to the base-

line model as described in Section III.c. In this experiment, 

the best acoustic model using LDA-MLLT and discrimina-

tive training described in the robust acoustic modeling ex-

periment was conducted. 

The LOTUS-SOC scripts contain 3.2 million words 

with 17,000 unique words. Trigram language model was 

constructed for both the baseline and the LOTUS-SOC 

data. The interpolation weight λ was empirically tuned to 

0.68. Fig. 3 illustrates comparative results. The best result 

is obtained by language model interpolation and MMI-

based acoustic modeling, which achieves over 10% rela-

tive reduction of WER. 

 

 
Fig. 3. Word error rate (%) results of the baseline and interpolated lan-

guage models. 

d. Experiments on the Run-time Performance 

According to the newly designed run-time system ex-

plained in the Section III.c, we expect the system could op-

erate in a much lower Real-time Factor (RTF); calculated 

by the total time required from the start of voice recording 

until the text output is shown, divided by the length of 

speech input. Since our ASR engine has been designed for 

scalability, its service can be multiplied and run in parallel 

to serve concurrent requests. We also expect our system to 

be acceptably fast in both broadband (WiFi) and narrow-

band (3G) conditions. We simulated run-time usage by var-

ying the number of concurrent inputs, the number of avail-

able ASR services, and a network condition. The broad-

band is set 30 Mbps uploading and 30 Mbps downloading, 

whereas the narrow-band is set 500 Kbps uploading and 1 

Mbps downloading. 

Fig. 4 presents RTF results from both the baseline archi-

tecture (denoted as “B” in the graph) and the improved ar-

chitecture in the Fig. 1 (denoted as “I” in the graph). The 

results obviously show that at only one ASR service in the 

narrow-band condition, the new architecture can reduce the 

RTF down from 3.0xRT to about 1.2xRT, closed to that 

produced in the broadband network. One run-time service 

supports up to 5 concurrent requests at about 3.5xRT re-

sponse time. The system footprint per service is recom-

mended at least 6.2 GB RAM, 3 GB HDD, 2.6 GHz CPU, 

and 100 Mbps speed network adapter. 

 

 

Fig. 4. RTF results of the systems running in a broadband (WiFi) condi-

tion (top), and a narrow-band (3G) condition (bottom), B and I denote 

the baseline and the improved systems. 

TABLE IV 

RTF results of the baseline (B), improved (I), and Docker-based 

improved (D) systems under a broadband (WiFi) condition. 

System 
No. of concurrent inputs 

1 2 4 6 8 

Baseline (B) 1 service 1.34 2.07 3.53   

2 services 1.35 1.49 2.21 3.13  

4 services 1.22 1.42 1.63 2.11 2.47 

Improved (I) 1 service 1.37 1.83 3.05 4.08  

2 services 1.24 1.44 2.11 2.79 3.46 

4 services 1.37 1.41 1.61 2.07 2.43 

Docker (D) 2 services 1.23 1.60 2.18 2.81 3.46 

4 services 1.21 1.26 1.60 2.01 2.35 

 

According to Section III.c, the run-time performance is 

expected to further improve by using the Docker platform. 

To evaluate the idea, a 16-core 2.6 GHz Intel Xeon CPU, 

64 GB RAM, 1.5 TB HDD, and 1 Gb Ethernet adapter 

server was prepared. The improved system architecture de-

scribed above, denoted “Improved (I)”, and a new system 

deployed on the Docker platform, denoted “Docker (I+D)”, 

were compared with the “Baseline (B)” system on the same 

server. In this experiment, the server and client were only 

connected via a broadband network (WiFi). Table IV sum-

marizes comparative results. According to Table IV, the 

Docker-based system shows its efficiency obviously when 

a higher number of speech recognition services is availa-
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ble. The Docker-based system is not only benefit in reduc-

ing the processing RTF, its resources required are also 

much more efficient by the resource sharable feature. For 

example, the improved system requires about 10 GB for 

each speech recognition service whereas the Docker-based 

system consumes only about 1 GB each. More details are 

given in Chunwijitra et al. [26]. 

V. Conclusion and Discussion 

This paper aimed at summarizing the key research and de-

velopment issues, and showed the recent performance of a 

Thai open-vocabulary ASR system at NECTEC. Following 

the advanced algorithms on robust speech feature extrac-

tion, discriminative training, and multi-conditioned noisy 

speech training clearly raised the overall recognition accu-

racy on our real-noisy speech evaluation data. The novel 

hybrid word-subword language modeling method was 

shown to be highly efficient for making the system largely 

covers Thai lexical words at a small resource required. The 

system architecture was well designed to be ready for ser-

vice deployment. The developed run-time system produced 

an acceptable response time and is scalable up on the user 

requirement. 

Limitations of the system are of course existing. One 

major issue is the coverage of proper names always created 

every day. Although the system has been built with open-

vocabulary in mind, real applications are often domain and 

vocabulary specific. Enlarging the system lexicon is not al-

ways right but with the current highly covered lexicon, a 

method to rapidly adapt the system to cope with such spe-

cific set of vocabulary is more attractive. Another issue is 

the 4-gram rescoring part, which can clearly increase the 

overall recognition accuracy, has been skipped in our run-

time system to preserve a low RTF. There might be a better 

way to take the larger n-gram into account. In real applica-

tions, the system robustness against a variety of back-

ground noise is still open for research. Background music 

and speaker separation is needed to make the system usa-

ble. 

Deep neural network (DNN) has been in the recent trend 

of modern ASR as it naturally handles the large variation 

of input speech. The values of DNN hidden layers have 

also been proven to be an efficient features for further con-

ventional processing. Recurrent neural network (RNN) and 

Long short-term memory (LSTM) has also been investi-

gated for modern language modeling as their better prop-

erties to capture long dependency than the conventional n-

gram model. Our current research focuses on such DNN-

based algorithms. The RNN language model has also been 

experimented for our future ASR system [12]. 
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