
1

Generating Synthetic Training Images for Deep Reinforcement
Learning of a Mobile Robot

Sumeth Yuenyong and Qu Jian

Abstract— This paper proposes the use of variational autoencoder (VAE) to generate synthetic training images for deep
reinforcement learning of a mobile robot. Deep reinforcement learning typically requires millions of interactions with the
real world in order to learn good control policies, which is impractical for robotic tasks. Using synthetic images generated
by a VAE, one may be able to reduce the number of interactions by running a deep reinforcement learning algorithm
off these images, instead of real ones captured by the camera. Our experiment shows, for this particular task, that the
VAE can generate synthetic images which are almost non-discernible from those obtained by direct reconstruction of real
images.

Index Terms—variational autoencoder; deep reinforcement learning; machine learning

I. INTRODUCTION

DEEP reinforcement learning that combines reinforcement
learning and deep neural network together had demon-

strated tremendous success in making a computer learn how to
play Atari video games at human or super-human performance.
The method, called DQN uses no teaching signal other than
the raw game screens and the game score and is able to learn
good control policies for a wide rage of Atari games while
using the same architecture and hyper-parameters for each
[9], [10]. However, despite great success in the domain of
video games/simulation (e.g. Atari/Mujoco physics simulator),
deep reinforcement learning using only high-dimensional raw
image input have had relatively limited success when it comes
to real-world domain such as robotic/mobile agent tasks [1],
[8], [11], [13], [14]. The main reason for this is the very
large number of iterations needed by state-of-the-art deep
reinforcement learning algorithms to converge. For example, in
[10], the DQN network was trained using 50 millions images.
While this may be fine for learning to play a video game,
where one can just leave the game emulator running for days
non-stop, for real-world robotic tasks it is simply impractical.
This had forced researchers take another approach when faced
with real-world reinforcement learning task, which is to reduce
the dimension of the training images by various techniques,
developed models for state transition in this low dimensional
space and then use model reference adaptive control (MRAC)
to train the agent such as in [11], [13]. While this approach
works fine and require much fewer iterations than something
like DQN, it is limited to tasks where it is possible to provide
a reference image of where one wants the agent to move to,
i.e., they are limited to simple direct movement tasks such as
swinging the pendulum by 180 or place the hand of the robot
arm in a designated area only.

Generative Models [4] refers to a class of neural network
architectures trained to produce outputs that looks similar to,

Sumeth Yuenyong is with the Department of Computer Engineering,
Faculty of Engineering, Mahidol University. 25/25 Phutthamonthon 4 Rd.,
Salaya, Nakhon Pathom, 73170 Thailand, email: sumeth.yue@mahidol.ac.th

Qu Jian is with the School of Science and Technology, Shinawatra Uni-
versity. 99 Moo 10 Bang Toey, Sam Khok District, Pathum Thani 12160,
Thailand

but not actually part of, the training set used to train them.
Since real-world data is limited for robotic deep reinforcement
learning, one possible way that may be able to get around this
issue is to use generative models that had been trained with
real-world images of the agent moving about its environment
to generate additional training images without having to actu-
ally interact with the real world. The rationale of this approach
is that it takes relatively little data to train a generative network
to produce realistic-looking images compared to training the
DQN network, therefore, only a much smaller amount of real-
world interactions will be needed.

Recently, a particular type of generative network called
Variational Autoencoders (VAE) [7] had gained popularity due
to its generative performance and a solid theoretical foundation
rooted in Bayesian inference. In this work, we demonstrate
that VAE can be used to generate images of a mobile robot
moving in its environment that look like actual real-world
images captured by the camera (after some image processing
had been applied); with the ultimate goal of being able to
greatly reduce the number of real-world interaction that a
mobile reinforcement learning would have to make during
training.

II. VARIATIONAL AUTOENCODER

The task of the VAE is to generate outputs X in the high-
dimensional image space such that each output looks like it
came from a training set, e.g., generating images of hand-
written digits after being trained with the MNIST database
[2]. Its structure is similar to the standard autoencoder [5],
which has an encoder part that transforms the input into
the lower-dimensional “latent” space and a decoder part that
reconstructs it back. Unlike the standard autoencoder however,
the derivation of the VAE starts from the decoder. Figure 1
shows the decoder part of the VAE - a network that transform
a point in the latent space to the image space. The latent
representation z is sampled from a multivariate distribution
P (z), then passed through a decoder network parametrized
by some parameter vector θd which produces the output X
that will look similar to the training set after training.

A detailed tutorial to VAE can be found in [3], which we
briefly summarize here. VAE is derived from maximizing the

2

probability P (X) of observing X that is similar to the training
set, given the sampled latent representation z

P (X) =

∫
P (X|z; θd)P (z)dz. (1)

The prior in the latent space P (z) is restricted to be of the
form N (µ,Σ), where µ is a vector of means and Σ is a
diagonal covariance matrix. We have no access to the posterior
P (X|z; θd) and must resort to using variational inference
technique [12] in order to maximize (1). Variational inference
works by constructing another distribution Q(z|X; θe) which
is implemented by the encoder network. It is fed with real
images and produce the mean vector µ and the diagonal
elements of Σ that defines the prior P (z) in latent space
that when sampled from, allows the decoder to generate
realistic-looking X . During training of the VAE two losses
are minimized: the latent lost, which is the KL divergence
between Q(z|X; θe), i.e., the distribution parametrized by the
outputs of the encoder, and the standard multivariate normal
distribution; the second is the reconstruction loss, which is the
mean squared error or cross-entropy between the reconstructed
image and the input image.

Ltotal = Llatent + Lreconstruction

= KL(N (µ,Σ)||N (0, I)) + ||X − f(z)||2,
(2)

where f denotes the output of the decoder given some latent
representation z.

Finally, for the entire VAE network to be trainable by
stochastic gradient descent, the “reparameterization trick” is
used so that z can be sampled from N (0, I) and shift the
sampling operation (which is not differentiable) from the
middle of the signal-flow graph to an input node instead (see
Figure 4 in [3] for details). Once trained, the VAE can be
used to generate additional synthetic images by first feeding
it with a batch of real images from the training set so that µ
and Σ are defined, then we can sample points from a standard
multivariate normal and then transform those points such that
it is as if they were sampled directly from P (z) by

z = µ+ ε
√

diag(Σ), (3)

where ε and z respectively are vectors representing a point
sampled from the standard multivariate normal and a point
under the P (z) distribution. Here, with a slight abuse of
notation, we use diag(Σ) to mean a vector that holds the
diagonal components of Σ. The transformed point z is fed
through the decoder network in order to produce the output
X . Alternatively, VAE can also be used in the encoding mode,
where the mean vector µ outputted by the encoder is taken to
be the latent representation of an input image.

III. EXPERIMENTAL SETUP

The environment for our mobile robot agent is a black
plastic sheet with white circles for obstacles and a white line
as the goal. The objective of this task is the following: the
agent starts from the left edge of the board, and must drive
to the goal line, while avoiding the obstacles along the way,
as shown in Figure 2. The closer the agent gets to the finish

Fig. 1: The decoder part of the VAE. A point is drawn from the
standard multivariate normal, transformed into z and passed
through a decoder network parametrized by θd to produce the
output image X .

line, the higher the reward. If it hits an obstacle, the award is
greatly reduced. This task cannot be achieved using MRAC
based methods such as [1], [11], because no reference image
can tell the agent to avoid the obstacles.

In order to track the movement of the agent, a camera is
placed looking down from the top, producing bird-eye view
images. The specific camera we had chosen is Sony’s PS3Eye
camera, because it is very affordable and unlike other webcams
at this price range is capable of recording at 120 fps. High
frame rate is desirable because we can get more images in
the same amount of time and avoid any possible motion blur
caused by the movement of the agent.

The agent is a small RC car with two wheels driven by
two stepper motors and controlled from a PC via Bluetooth.
A picture of the agent (without batteries installed) is shown in
Figure 3. The agent can perform 4 possible discrete actions:
move forward, turn left/right (in place) and go back. The wheel
RPM that the agent performs each action is hard-coded at 60
RPM in the Arduino board on the agent. The top of the agent
is covered with a black plastic plate with an isosceles triangle
painted on top that looks like an arrow pointing in the forward
direction of the agent. The purpose of the cover is to hide all
the circuits underneath which has nothing to do with the state
of the agent in its environment: namely the x-y coordinate in
pixels and the direction that the arrow/triangle is pointing to.
By hiding the body of the agent under the plastic plate, the
VAE only has to generate the white triangle representation of
the agent, without the complicated but unnecessary features
underneath.

Furthermore, we also applied some image processing to
the raw camera images captured which can contain a lot
of noise. Specifically, each image is converted to grayscale,
thresholded to black-and-white and resized to 80 by 80 pixels.
An example of a processed image that is part of the training set
for the VAE is shown in Figure 4. This image, while heavily
simplified, contains all the information that a reinforcement
learning algorithms needs; the position/orientation of the agent
is clearly discernible, as well as the positions of each obstacles
and the position of the finish line. It is also free from noise that
can cause problems for a reinforcement learning algorithm.

The summary of the steps in our experiment is shown in
Figure 5. The agent was controlled manually through a PC
and driven systematically around the environment in the lawn
mower style pattern, stopping each time it has traveled about
half its length to make a 360 turn in-place. This pattern sweeps
through the different states of the agent in this environment.
We kept driving in this pattern until the batteries ran out. Total
recording time was about 1 hour and we obtained close to

3

Fig. 2: The agent on the playing field as seen by the camera.

Fig. 3: The mobile agent.

100,000 images. We processed the images and then trained
a VAE with the following architecture and parameters: the
encoder network has three fully-connected layers with 2500
units in the first layer, 500 units in the second layer and 20
units (the dimension of the latent space) in the last layer;
the decoder network is also fully-connected with 500 units
in the first layer, 2500 in the second and 6400 in the last
layer (the dimension of the output image is 80 by 80 pixels).
Each unit in both the encoder and decoder networks has relu
activation function, except for the last layers which have linear
and sigmoid activation functions for the encoder and decoder,
respectively. The other hyper parameters were: batch size of
100, learning rate of 0.001, the number of training epochs
was 250 and the optimizer used was Adams [6]. The code
was implemented in Tensorflow.

IV. EXPERIMENT RESULTS

We trained the VAE using around 80,000 preprocessed
images on a PC with a GTX 980Ti GPU. Total training

Fig. 4: An example of a processed image, ready to use to train
the VAE.

Fig. 5: The steps of our experiment.

time was around 45 minutes. Because Tensorflow by default
reserves the entire GPU memory when it runs, we did not
measure the GPU memory usage. GPU utilization as reported
by the nvidia-smi utility was around 85%. The training loss
curve as calculated by (2) is shown in Figure 6.

Fig. 6: The learning curve during training of the VAE.

Figure 7 shows the result of running the trained VAE in the
“reconstruction” mode. It is fed with inputs from a separate
test set, there was no sampling in the latent layer and the
output of the encoder network is directly fed into the decoder
network. Therefore ideally the output of the whole network
should look exactly like the input. It can be seen from Figure
7 that the output of the VAE is very close to the input,
with only minor blurring of the agent, but its position is
clearly discernible, as well as the direction that the arrow is
pointing to. This shows that the latent layer is a good compact
representation of the input.

Figure 8 shows the images obtain by running the VAE in
generating mode. First a batch of real images from the test
set is fed into the encoder network to obtain µ and Σ from
the output of the last layer. Then points are sampled from the
standard multivariate normal and then transformed to points
under P (z) using (3), the transformed points are then fed into
the decoder network to produce the synthetic images, some

4

Fig. 7: (Top) The input images into the VAE and (bottom) the
reconstructed images.

of which are shown (chosen at random) in Figure 8. It can
be seen that even for a human it is hard to tell the difference
between the reconstructed and the generated images.

Fig. 8: Synthetic images created from running the VAE in the
generating mode.

V. CONCLUSION

In this paper, the use of VAE to generated synthetic images
for a mobile robot reinforcement learning task was proposed.
The trained VAE was able to produce realistic-looking images
that is hard to discern from images reconstructed directly from
real inputs. Although the generated images look very similar to
real images, there were some images in which the shape of the
agent was not clear, i.e., it was difficult to tell which direction
the agent is pointing too. In this regard, it seems possible
to improve the results presented here further by adjusting the
network architecture and hyper parameters, and experimenting
with convolutional structures to see if that would improve the
results. Another possible way of improving the result may
be simply to train with a larger set of images. We think this
may be the case because looking at the result in Figures 8,
the circles and the line were always sharp, unlike the agent
which sometimes was blurry. This maybe because the VAE
had seen thousands of images with the line and circles in the
same positions In contrast, the number of images with the
agent at any particular orientation and location in the field
is likely to be few compared to the size of the training set.
Since the training time here was just 45 minutes, much larger
training set would still be feasible to train using the hardware
we currently have available.

ACKNOWLEDGMENT

This research was supported by the Thailand Re-
search Fund’s New Faculty Member Grant (grant number:
MRG5980221).

REFERENCES

[1] J.-A. M. Assael, N. Wahlström, T. B. Schön, and M. P. Deisenroth.
Data-efficient learning of feedback policies from image pixels using
deep dynamical models. arXiv preprint arXiv:1510.02173, 2015.

[2] L. Deng. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine,
29(6):141–142, 2012.

[3] C. Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680,
2014.

[5] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

[6] D. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[7] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[8] S. Lange, M. Riedmiller, and A. Voigtlander. Autonomous reinforcement
learning on raw visual input data in a real world application. In Neural
Networks (IJCNN), The 2012 International Joint Conference on, pages
1–8. IEEE, 2012.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[11] N. Wahlström, T. B. Schön, and M. P. Deisenroth. From pixels to
torques: Policy learning with deep dynamical models. arXiv preprint
arXiv:1502.02251, 2015.

[12] M. J. Wainwright, M. I. Jordan, et al. Graphical models, exponential
families, and variational inference. Foundations and Trends R© in
Machine Learning, 1(1–2):1–305, 2008.

[13] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller. Embed
to control: A locally linear latent dynamics model for control from raw
images. In Advances in Neural Information Processing Systems, pages
2728–2736, 2015.

[14] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke. Towards
vision-based deep reinforcement learning for robotic motion control.
arXiv preprint arXiv:1511.03791, 2015.

Sumeth Yuenyong received his B.Eng. in Electrical Engineering and M.Eng
in Information and Communication Technology for Embedded Systems;
from Sirindhorn International Institute of Technology (SIIT) in 2004 and
2010, respectively. He received the Japanese Government Scholarship (Mon-
bukagakusho) to study in Japan and obtained a M.Eng and a D.Eng in
Communication and Integrated Systems from Tokyo Institute of Technology in
2011 and 2014, respectively. Currently he is with the Department of Computer
Engineering, Faculty of Engineering, Mahidol University. He received a New
Faculty Member grant from the Thailand Research Fund in 2016. His research
interests include: signal and image processing, deep learning and embedded
systems.

Qu Jian is a lecturer with the School of Information Technology, Shinawatra
University, Thailand. He received Ph.D. with Outstanding Performance award
from Japan Advanced Institute of Science and Technology, Japan, in 2013.
He received B.B.A with Summa Cum Laude honors from Institute of Interna-
tional Studies of Ramkhamhaeng University, Thailand, in 2006, and M.S.I.T
from Sirindhorn International Institute of Technology, Thammast University,
Thailand, in 2010. His research interests are natural language processing,
intelligent algorithms, machine learning, machine translation, information
retrieval and image processing.

